Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

22.08.2018 | Original Article | Ausgabe 5/2020

Neural Computing and Applications 5/2020

Estimation of hydrogen flow rate in atmospheric Ar:H2 plasma by using artificial neural network

Zeitschrift:
Neural Computing and Applications > Ausgabe 5/2020
Autoren:
Sarita Das, Debi Prasad Das, Chinmaya Kumar Sarangi, Bhagyadhar Bhoi

Abstract

Atmospheric Ar:H2 plasma is an eco-friendly option for the reduction of metal oxides. For better reduction performance and safety concern, the hydrogen gas injected into the reactor should be monitored. A hydrogen flow rate estimation system is presented in this paper by using an artificial neural network (ANN) model fed with features of optical emission spectra of the plasma. ANN models are studied with two different sets of input, i.e. for the first case the inputs to the model are the three features of Hα line such as the peak intensity count, full-width half maximum and area under Hα line, while for the second case, the peak intensity count of a group of emission lines like Hα, Ar I, O I, K I, Na D lines are considered as the inputs. ANN model is developed for estimating four different sets of hydrogen flow rates 5, 8, 10 and 12 litres per minute (lpm) when the argon flow rate is constant at 10 lpm. For both the input features, the model performances are compared, and it is shown that improved estimation accuracy is observed from the second case, i.e. from peak intensity count of a group of emission lines instead of only hydrogen emission line.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2020

Neural Computing and Applications 5/2020 Zur Ausgabe

Premium Partner

    Bildnachweise