Skip to main content
Erschienen in: Steel in Translation 4/2020

01.04.2020

Estimation of Metal Drop Size on a Reducing Gas Bubble during Oxide Melt Bubbling

verfasst von: A. S. Vusikhis, E. N. Selivanov, L. I. Leont’ev, V. P. Chentsov

Erschienen in: Steel in Translation | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we use the metal-phase formation model to estimate the drop size formed on individual bubbles of the reducing gas during the oxide melt bubbling. The model includes the following stages: the bubble formation upon gas injection into the melt, metal reduction on the bubble surface, and its drop concentration in the stern. We present equations that estimate the limiting sizes of a gas bubble (\(R_{{\text{b}}}^{{{\text{cr}}}}\)) and a drop (\(r_{{\text{d}}}^{{{\text{cr}}}}\)) moving in an oxide melt without defragmentation. The critical sizes of a gas bubble (\(R_{{\text{b}}}^{{{\text{cr}}}}\)) moving in an oxide melt without defragmentation were calculated using the densities (ρ kg/m3) and surface tension (σ, mJ/m2) of B2O3–CaO and B2O3–CaO–CuO melts that are, respectively, described by the equations: σ1 = 87.0 + 0.242T , ρ1 = 3.26 × 103 – 0.91T, σ2 = 10.8 + 0.178T, ρ2 = 3.19 × 103 – 0.70T in the temperature range of 1373–1673 K. Depending on the temperature, the critical bubble radius varies from 0.047 to 0.053 m in the B2O3–CaO–CuO melt and 0.06–0.081 m in the B2O3–CaO melt. Depending on the CO amount introduced at various temperatures, the change in the copper oxide content in the B2O3–CaO–CuO melt was determined by calculating the thermodynamic equilibrium to describe the features of oxide melt bubbling by various reducing gases. Based on the obtained data, the copper amount produced from the interaction of Cu2O in the melt with a single CO bubble was calculated depending on the copper oxide content and the CO amount in the bubble. The correlation dependences of the drop size on the Cu2O content in the melt (\({{C}_{{{\text{C}}{{{\text{u}}}_{{\text{2}}}}{\text{O}}}}}\), %), temperature (T, К), and the CO amount in the bubble (nCO, mol) were obtained by statistical data processing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Vanyukov, A.B., Bystrov, V.P., Vaskevich, A.D., et al., Plavka v zhidkoi vanne (Melting in Liquid Bath), Moscow: Metallurgiya, 1986. Vanyukov, A.B., Bystrov, V.P., Vaskevich, A.D., et al., Plavka v zhidkoi vanne (Melting in Liquid Bath), Moscow: Metallurgiya, 1986.
2.
Zurück zum Zitat Schlesinger, M.E., King, M.J., Sole, K.C., and Davenport, W.G., Extractive Metallurgy of Copper, Amsterdam: Elsevier, 2011, 5th ed. Schlesinger, M.E., King, M.J., Sole, K.C., and Davenport, W.G., Extractive Metallurgy of Copper, Amsterdam: Elsevier, 2011, 5th ed.
3.
Zurück zum Zitat Vignes, A., Extractive Metallurgy 3: Processing Operations and Routes, Chichester: Wiley, 2011. Vignes, A., Extractive Metallurgy 3: Processing Operations and Routes, Chichester: Wiley, 2011.
4.
Zurück zum Zitat Bakker, M.L., Nikolic, S., and Mackey, P.J., ISASMELT™ TSL—Applications for nickel, Miner. Eng., 2011, vol. 24, no. 7, pp. 610–619.CrossRef Bakker, M.L., Nikolic, S., and Mackey, P.J., ISASMELT™ TSL—Applications for nickel, Miner. Eng., 2011, vol. 24, no. 7, pp. 610–619.CrossRef
5.
Zurück zum Zitat Bakker, M.L., Nikolic, S., Burrows, A.S., and Alvear G.R.F., ISACONVERT™—continuous converting of nickel/PGM mattes, J. S. Afr. Inst. Min. Metall., 2011, vol. 111, no. 10, pp. 285–294. Bakker, M.L., Nikolic, S., Burrows, A.S., and Alvear G.R.F., ISACONVERT™—continuous converting of nickel/PGM mattes, J. S. Afr. Inst. Min. Metall., 2011, vol. 111, no. 10, pp. 285–294.
6.
Zurück zum Zitat Romenets, V.A., Romelt process, Iron Steelmaker, 1995, vol. 22, no. 1, pp. 37–41. Romenets, V.A., Romelt process, Iron Steelmaker, 1995, vol. 22, no. 1, pp. 37–41.
7.
Zurück zum Zitat Komkov, A.A., Baranova, N.V., and Bystroe, V.P., Reductive depletion of highly oxidized slags during barbotage, Tsvetn. Met., 1994, no. 12, pp. 26–30. Komkov, A.A., Baranova, N.V., and Bystroe, V.P., Reductive depletion of highly oxidized slags during barbotage, Tsvetn. Met., 1994, no. 12, pp. 26–30.
8.
Zurück zum Zitat Krasheninnikov, M.V., Marshuk, L.A., and Leont’ev, L.I., Selective reduction of nickel from oxide melt, Rasplavy, 1998, no. 4, pp. 45–48. Krasheninnikov, M.V., Marshuk, L.A., and Leont’ev, L.I., Selective reduction of nickel from oxide melt, Rasplavy, 1998, no. 4, pp. 45–48.
9.
Zurück zum Zitat Fomichev, V.B., Knyazev, M.V., Ryumin, A.A., Tsemekhman, L.Sh., Ryabko, A.G., Pavlinova, L.A., and Tsymbulov, L.B., Study of slag depletion process with blowing by gas mixes having different partial oxygen pressure, Tsvetn. Met., 2002, no. 9, pp. 32–36. Fomichev, V.B., Knyazev, M.V., Ryumin, A.A., Tsemekhman, L.Sh., Ryabko, A.G., Pavlinova, L.A., and Tsymbulov, L.B., Study of slag depletion process with blowing by gas mixes having different partial oxygen pressure, Tsvetn. Met., 2002, no. 9, pp. 32–36.
10.
Zurück zum Zitat Komkov, A.A. and Kamkin, R.I., Behavior of copper and impurities when blowing copper smelting slag with a CO–CO2 gas mixture, Tsvetn. Met., 2011, no. 6, pp. 26–31. Komkov, A.A. and Kamkin, R.I., Behavior of copper and impurities when blowing copper smelting slag with a CO–CO2 gas mixture, Tsvetn. Met., 2011, no. 6, pp. 26–31.
11.
Zurück zum Zitat Komkov, A.A. and Kamkin, R.N., Mechanism for the reduction of oxides in copper-smelting slag under blowing with CO–CO2 gas mixtures, Russ. J. Nonferrous Met., 2020, vol. 61, no. 1, pp. 57–64.CrossRef Komkov, A.A. and Kamkin, R.N., Mechanism for the reduction of oxides in copper-smelting slag under blowing with CO–CO2 gas mixtures, Russ. J. Nonferrous Met., 2020, vol. 61, no. 1, pp. 57–64.CrossRef
12.
Zurück zum Zitat Yusupkhodjaev, A.A., Khojiev, Sh.T., Berdiyarov, B.T., Yavkochiva, D.O., and Ismailov, J.B., Technology of processing slags of copper production using local secondary technogenic formations, Int. J. Innovative Technol. Explor. Eng., 2019. vol. 9, no. 11, pp. 5461–5472.CrossRef Yusupkhodjaev, A.A., Khojiev, Sh.T., Berdiyarov, B.T., Yavkochiva, D.O., and Ismailov, J.B., Technology of processing slags of copper production using local secondary technogenic formations, Int. J. Innovative Technol. Explor. Eng., 2019. vol. 9, no. 11, pp. 5461–5472.CrossRef
13.
Zurück zum Zitat Makhmadiyarov, T.M., Deev, V.I., and Khudyakov, I.F., Kinetics of copper oxide reduction by carbon monoxide from silicate melts, Izv. Akad. Nauk SSSR, Met., 1974, no. 4, pp. 34–37. Makhmadiyarov, T.M., Deev, V.I., and Khudyakov, I.F., Kinetics of copper oxide reduction by carbon monoxide from silicate melts, Izv. Akad. Nauk SSSR, Met., 1974, no. 4, pp. 34–37.
14.
Zurück zum Zitat Krasikov, S.A. and Lyamkin, S.A., Kinetics of copper reduction from molten slag by carbon monoxide, Tsvetn. Met., 1994, no. 7, pp. 19–21. Krasikov, S.A. and Lyamkin, S.A., Kinetics of copper reduction from molten slag by carbon monoxide, Tsvetn. Met., 1994, no. 7, pp. 19–21.
15.
Zurück zum Zitat Vusikhis, A.S., Dmitriev, A.N., Leont’ev, L.I., and Shavrin, S.V., Kinetics of metal oxides reduction from the melt by reducing gas in barbotage layer, Materialovedenie, 2002, no. 10, pp. 30–34. Vusikhis, A.S., Dmitriev, A.N., Leont’ev, L.I., and Shavrin, S.V., Kinetics of metal oxides reduction from the melt by reducing gas in barbotage layer, Materialovedenie, 2002, no. 10, pp. 30–34.
16.
Zurück zum Zitat Vusikhis, A.S., Leont’ev, L.I., Chentsov, V.P., Kudinov, D.Z., and Selivanov, E.N., Formation of metallic phase by passing gaseous reducing agent through multicomponent oxide melt. Part 1. Theoretical principles, Steel Transl., 2016, vol. 46, no. 9, pp. 629–632.CrossRef Vusikhis, A.S., Leont’ev, L.I., Chentsov, V.P., Kudinov, D.Z., and Selivanov, E.N., Formation of metallic phase by passing gaseous reducing agent through multicomponent oxide melt. Part 1. Theoretical principles, Steel Transl., 2016, vol. 46, no. 9, pp. 629–632.CrossRef
17.
Zurück zum Zitat Vusikhis, A.S., Leont’ev, L.I., Chentsov, V.P., Kudinov, D.Z., and Selivanov, E.N., Formation of metallic phase by passing gaseous reducing agent through multicomponent oxide melt. Part 3. Separation of ferronickel and oxide melt. Theoretical principles, Steel Transl., 2017, vol. 47, no. 12, pp. 772–776.CrossRef Vusikhis, A.S., Leont’ev, L.I., Chentsov, V.P., Kudinov, D.Z., and Selivanov, E.N., Formation of metallic phase by passing gaseous reducing agent through multicomponent oxide melt. Part 3. Separation of ferronickel and oxide melt. Theoretical principles, Steel Transl., 2017, vol. 47, no. 12, pp. 772–776.CrossRef
18.
Zurück zum Zitat Belousov, A.A., Selivanov, E.N., Bedyaev, V.V., and Litovskikh, S.N., The use of boron fluxes to improve the quality of blister copper, Tsvetn. Met., 2003, no. 10, pp. 13–17. Belousov, A.A., Selivanov, E.N., Bedyaev, V.V., and Litovskikh, S.N., The use of boron fluxes to improve the quality of blister copper, Tsvetn. Met., 2003, no. 10, pp. 13–17.
19.
Zurück zum Zitat Chentsov, V.P., Shevchenko, V.G., Mozgowoi, A.G., and Pokrasin, M.A., Density and surface tension of heavy liquid-metal coolants: gallium and indium, Inorg. Mater.: Appl. Res., 2011. vol. 2, no. 5, pp. 468–473.CrossRef Chentsov, V.P., Shevchenko, V.G., Mozgowoi, A.G., and Pokrasin, M.A., Density and surface tension of heavy liquid-metal coolants: gallium and indium, Inorg. Mater.: Appl. Res., 2011. vol. 2, no. 5, pp. 468–473.CrossRef
20.
Zurück zum Zitat Vusikhis, A.S., Leont’ev, L.I., Chentsov, V.P., Kudinov, D.Z., and Selivanov, E.N., Formation of metallic phase by passing gaseous reducing agent through multicomponent oxide melt. Part 2. Density and surface properties, Steel Transl., 2017, vol. 47, no. 1, pp. 21–25.CrossRef Vusikhis, A.S., Leont’ev, L.I., Chentsov, V.P., Kudinov, D.Z., and Selivanov, E.N., Formation of metallic phase by passing gaseous reducing agent through multicomponent oxide melt. Part 2. Density and surface properties, Steel Transl., 2017, vol. 47, no. 1, pp. 21–25.CrossRef
21.
Zurück zum Zitat Vusikhis, A.S., Leont’ev, L.I., Selivanov, E.N., and Chentsov, V.P., Modeling of metals gas reduction of from multi-component oxide melt in barbotage layer, Butlerovskie Soobshch., 2018. vol. 55, no. 7, pp. 58–63. Vusikhis, A.S., Leont’ev, L.I., Selivanov, E.N., and Chentsov, V.P., Modeling of metals gas reduction of from multi-component oxide melt in barbotage layer, Butlerovskie Soobshch., 2018. vol. 55, no. 7, pp. 58–63.
22.
Zurück zum Zitat Arsent’ev, P.P. and Koledov, L.A., Metallicheskie rasplavy i ikh svoistva (Metal Melts and Their Properties), Moscow: Metallurgiya, 1976. Arsent’ev, P.P. and Koledov, L.A., Metallicheskie rasplavy i ikh svoistva (Metal Melts and Their Properties), Moscow: Metallurgiya, 1976.
Metadaten
Titel
Estimation of Metal Drop Size on a Reducing Gas Bubble during Oxide Melt Bubbling
verfasst von
A. S. Vusikhis
E. N. Selivanov
L. I. Leont’ev
V. P. Chentsov
Publikationsdatum
01.04.2020
Verlag
Pleiades Publishing
Erschienen in
Steel in Translation / Ausgabe 4/2020
Print ISSN: 0967-0912
Elektronische ISSN: 1935-0988
DOI
https://doi.org/10.3103/S0967091220040117

Weitere Artikel der Ausgabe 4/2020

Steel in Translation 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.