Abstract
Rapid economic growth, especially in developing countries, directly impacts transport fuel demand, waste generation and greenhouse gas (GHG) emissions. Hence, there is an increasing need to supplement fossil fuel demand with sustainable alternative options while also addressing solid waste and GHG emissions. India generates the highest amount of annual municipal solid waste (MSW) (277 million tonnes out of the global 2.01 billion tonnes); this is estimated to double by 2050. This high MSW generation rate, inadequate management, unscientific landfilling and inefficient disposal practices is a serious concern to health and the environment. The organic fraction of MSW generated in India is estimated to be in the range of 40–60% and contains huge potential fuel value for waste to energy (WtE) options. Owning to the large availability of MSW and its associated environmental and social burdens, MSW for fuel production to support the nations’ sustainability commitments looks attractive, if done scientifically. Considering India as the case study, this chapter reviews the possible routes for converting MSW to useful automobile fuels. Additionally, through life cycle assessment (LCA), this chapter discusses the amount of fossil fuel substitution in the total mobility fuel mix by the MSW derived fuel. LCA evaluation revealed a net 85.03 kg CO2 eq. global warming potential, 0.184 mol H+ eq. acidification potential, 7.794 × 10–3 mol of N eq. eutrophication potential and 4.873 CTUh human toxicity potential, respectively, for ethanol production from 1 tonne of organic fraction of MSW. The findings can help assess the MSW utilization in a more scientific way wherein the benefits are assessed in terms of mitigation of GHG and environmental costs averted, in addition to foreign savings through the reduced import of fossil fuels. Few successful pilot projects as case studies will help getting several stakeholders together, which will be essential for taking this waste utilization option to a useful scale.