Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

1. Euclidean and Minkowski Steiner Trees

verfasst von : Marcus Brazil, Martin Zachariasen

Erschienen in: Optimal Interconnection Trees in the Plane

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter begins with a comprehensive study of the Euclidean Steiner tree problem. This is the most intuitively appealing of the Steiner tree problems and the one with the longest history. The first two sections of the chapter present the fundamental theory, which then leads into topics including computational complexity, algorithmic approaches and special cases. The chapter then looks at how some of the fundamental properties of Euclidean Steiner trees can be generalised to arbitrary norms, establishing some key general properties which are drawn on in the later chapters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The problem was suggested by Pierre de Fermat (1601–1665) in his celebrated essay on minima and maxima [152]: “Let he who does not approve of my method attempt the solution to the following problem: Given three points in the plane, find a fourth point such that the sum of its distances to the three given points is a minimum”. The earliest known solution to Fermat’s problem was a geometric construction due to the Italian physicist and mathematician Evangelista Torricelli (1608–1647) [371]. For a comprehensive study of the problem, see Kupitz and Martini [240].
 
2
The more usual term for this point is Fermat point or Fermat-Torricelli point, and for the more general case with n points minimising their distances to a single point, the point sought is also called the Steiner-Weber point. In this book we adopt the term Steiner point for all these cases, in order to emphasise the unity of this problem with the more general Steiner tree problems we discuss later. Essentially we are viewing the Fermat-Torricelli problem as the simplest non-trivial case of the Steiner tree problem.
 
3
This elegant construction is often attributed to Hofmann [200], but according to Honsberger [201, pp. 22–34], the Hungarian mathematician Tibor Gallai (1912–1992) discovered it independently. Some earlier attributions are mentioned in Kupitz and Martini [240], who name it the “rotation proof”. Presentations of the construction (and some generalisations) can be found in [125, 129, 184, 201, 222, 239].
 
4
Bonaventura Cavalieri (1598–1647), an Italian mathematician and Jesuate, argued that the segments connecting the given points with the Fermat-Torricelli point meet at 120 angles. The fact that the Simpson lines, which connect the third corner of the equilateral triangle to the opposite given point, also meet at the Fermat-Torricelli point was shown in 1750 by Thomas Simpson (1710–1761). In 1834, Heinen [190] proved that the length of the Simpson lines are equal to the sum of distances from the given points to the Fermat-Torricelli point.
 
5
The earliest known statement and analysis of the Euclidean Steiner tree problem was by the French mathematician and logician Joseph Diaz Gergonne (1771–1859). In 1810 Gergonne established his own mathematics journal entitled the Annales de mathématiques pures et appliquées but more generally known as the Annales de Gergonne. In the first volume of the journal from 1810/11 [174], Gergonne states the following problem: “A number of cities are located at known locations on a plane; the problem is to link them together by a system of canals whose total length is as small as possible”. It is clear from the analysis that this is indeed the Euclidean Steiner tree problem, and Gergonne even proposes a method for solving the problem that basically is identical to Melzak’s algorithm from 1961 [277]. During the nineteenth century, three other statements of the problem were given by: Carl Friedrich Gauss (1777–1855) in a letter to Schumacher from March 19, 1836; Karl Bopp (1856–1905) in his dissertation [36] from 1879; and Eduard Hoffmann (1858–1923) in a celebration essay [199] from 1890. The first modern treatment of the problem was given by Vojtěch Jarník and Miloš Kössler in 1934 [223]. For a detailed account on the history of the Euclidean Steiner tree problem, see [47].
 
6
Minimum Steiner trees are more typically referred to as ‘Steiner minimum trees’ or ‘Steiner minimal trees’ in the literature. The main reason for this appears to be to give them an acronym ‘SMT’ that is different from that of a minimum spanning tree ‘MST’. Mathematically, however, the term ‘Steiner minimum tree’ does not make sense (what is a ‘minimum tree’ and how can it be Steiner?), and hence in this book we avoid it. In some of the early literature terminals were also referred to as ‘regular points’, but ‘terminal’ seems preferable as the word ‘regular’ is ambiguous and heavily used in other areas of mathematics.
 
7
We should note that this definition of a Steiner tree is different from the one in Gilbert and Pollak [179] and Hwang, Richards and Winter [211], but it is more operational.
 
8
A recursion was first given by Bopp [36] in 1879. Gilbert and Pollak [179] gave the same recursion and the formula; they credit Riordan [324] with solving the recursion. The proof that any Steiner topology can be realised by some minimum Steiner tree was first given by Hwang et al. [213].
 
9
The exponential but finite construction of Melzak [277] was given in 1961. Melzak’s algorithm was for a long time believed to be the first finite-time algorithm for solving the problem. More recently it has been discovered that Gergonne in 1810/11 [174] presented a solution method that basically is identical to the one suggested by Melzak 150 years later [47]. Hwang [210] improved the running time of Melzak’s original exponential algorithm to linear time. A number of implementation details were presented by Smith [351].
 
10
The Euclidean Steiner tree problem in the plane does, however, have a polynomial-time approximation scheme [16]. This means that for any fixed ε > 0 there exists a polynomial-time algorithm for computing a Steiner tree of length at most a factor 1 +ε from optimum.
 
11
Here we give a brief history of the Steiner ratio conjecture, based largely on the 2012 account by Ivanov and Tuzhilin [220], and their update in 2014 [221]. In 1992 a paper by Du and Hwang [135] presented a proof of the Steiner ratio conjecture. This proof, though generally accepted throughout most of the Steiner tree community, also caused some concern as the argument had a certain lack of precision and formality making it difficult to verify. The first paper to seriously question the proof in [135] was that of Yue [426], in 2000; however, the details of Yue’s criticism of the proof were unconvincing, and a proposed alternative proof was flawed. In 2001–2003 a number of mathematicians, including Ivanov, Tuzhilin, Morgan, Bern, Ceislik, Graham and others, discussed Du and Hwang’s proof via e-mail in some detail. Two major gaps were identified in the proof: one concerned the continuity of the inner spanning tree length and the other the reduction to full Steiner topologies. While some discussion of these gaps (by Ivanov and Tuzhilin) appeared in the Russian language literature at the time it was not until 2008 that these gaps were discussed in the English language mathematics literature, first by Ivanov and Tuzhilin [219], and shortly afterwards by de Wet [128] and Innami et al. [218]. The general consensus appears to be that there is no obvious way of fixing these gaps in the proof, hence the Steiner ratio conjecture remains open.
 
12
This invariance property for the minimal Steiner hull was first stated 10 years earlier in Part 1, Theorem 1.5 of the book [211] by Hwang et al. However, Winter [405] gives a simple counter-example to show that a key assumption in the ‘proof’ of this result in [211], that any pair of consecutive legal replacements can be directly reversed, is incorrect.
 
13
The terminology for a lune, which originated with Gilbert and Pollak [179] and is now standard in the Steiner tree literature, is inconsistent with the standard geometrical terminology. In planar geometry, the term ‘lune’ usually refers to a crescent-shaped convex-concave region bounded by two circular arcs, or in other words, the relative complement of one disc in another (where they intersect but neither is a subset of the other). A ‘lune’, as defined here, is an example of a ‘lens’ in standard planar geometry.
 
14
A slightly weaker version of Lemma 1.15, with the added assumption that two different full Steiner trees exist for N, was first proved by Pollak [305]. Du et al. [137] later simplified Pollak’s proof, and showed that the existence of a second full Steiner tree is not required. They also showed that it is possible for a full Steiner tree of N that is not acute to be a minimum Steiner tree (if no other full Steiner tree exists).
 
15
Cockayne and Schiller [115] developed the first computer code to compute minimum Steiner trees in 1972. The computer program enumerated terminal subsets and full Steiner topologies for each subset, and used Melzak’s algorithm [277] to compute a full Steiner tree for a given full Steiner topology. The constructed full Steiner trees were then combined to form a minimum Steiner tree. Improved implementations of the algorithm were suggested by Boyce and Seery [39] and Boyce [38]. None of these implementations were able to compute minimum Steiner trees for more than 10 terminals. Winter [402] suggested the GeoSteiner approach in 1985, allowing the computation of minimum Steiner trees with more than 20 terminals. Cockayne and Hewgill [112, 113] suggested a number of improvements to Winter’s algorithm that allowed the computation of minimum Steiner trees with up to 50 terminals.
 
16
This use of the term “fulsome” is unfortunate, as the usual English meaning of the word is ‘excessive’ or ‘insincere’. However, since the publication of [211] the term has become standard.
 
17
This terminology is taken from [358].
 
18
Theorem 1.27 was first stated by Cockayne [110], but without a complete proof. Full proofs were given by Levy [252] and Alfaro et al. [7], before the rather more elegant and general proof given by Lawler and Morgan [241].
 
19
The approach here is loosely based on that outlined in [80] for the more restricted problem where the Minkowski norm has a strictly convex and differentiable unit circle. More details on the proof of this restricted problem, based on the method of Lagrange Multipliers, have also appeared in [176].
 
20
Such an edge e is referred to elsewhere in the literature [353] as a trombone wire. The slide described here is an example of a zero-shift, which we study in more detail in Chap. 2.
 
21
For more details on the early history of the Euclidean Steiner tree problem, see [47]. One of the few modern papers further exploring the potential of the Euclidean Steiner tree problem in the design of road networks is the work of Stückelberger et al. [357].
 
22
Employees or associates of Bell Laboratories who made important early contributions to the Euclidean Steiner tree problem in the plane include Zdzislaw Melzak [277], Edgar Gilbert [178], Henry Pollak [179], and Ronald Graham and Frank Hwang [183].
 
23
Karl Bopp’s publication on Steiner trees took the form of a dissertation entitled “On the shortest connection system for four points” [36]. As the title suggests, the work considers the problem of how to construct a minimum Euclidean Steiner tree on four terminals. Although most of the focus is on the planar case, the thesis concludes with some brief observations on the three-dimensional problem, and states (without proof) some of the fundamental properties of three-dimensional Euclidean Steiner trees. These properties were proved and generalised to d-dimensional space (for all integers d ≥ 2) in 1934 by the Czech mathematicians Jarník and Kössler [223], who were almost certainly unaware of Bopp’s earlier work. This paper fell into obscurity until it was eventually rediscovered in the 1970s. Higher dimensional Steiner trees were not studied again in the literature until the seminal paper of Gilbert and Pollak [179] in 1968, where there is a short discussion of the three-dimensional problem.
 
24
This non-computability result was first given by Smith [351], however the counter-example derived in that paper is difficult to verify. A clearer, more elegant counter-example was given by St. Mehlhos [276], who was apparently unaware of Smith’s paper. An easier method for constructing counter-examples was later devised by Rubinstein et al. [329].
 
Literatur
6.
Zurück zum Zitat Akiyama, J., Chen, X., Nakamura, G., Ruiz, M.: Minimum perimeter developments of the platonic solids. Thai J. Math. 9(3), 461–487 (2012)MathSciNet Akiyama, J., Chen, X., Nakamura, G., Ruiz, M.: Minimum perimeter developments of the platonic solids. Thai J. Math. 9(3), 461–487 (2012)MathSciNet
7.
Zurück zum Zitat Alfaro, M., Conger, M., Hodges, K., Levy, A., Kochar, R., Kuklinski, L., Mahmood, Z., von Haam, K.: The structure of singularities in ϕ-minimizing networks in R 2. Pac. J. Math. 149, 201–210 (1991)CrossRefMATH Alfaro, M., Conger, M., Hodges, K., Levy, A., Kochar, R., Kuklinski, L., Mahmood, Z., von Haam, K.: The structure of singularities in ϕ-minimizing networks in R 2. Pac. J. Math. 149, 201–210 (1991)CrossRefMATH
12.
Zurück zum Zitat Althaus, E.: Berechnung optimaler Steinerbäume in der Ebene. Master’s thesis, Max-Planck-Institut für Informatik in Saarbrücken, Universität des Saarlandes (1998) Althaus, E.: Berechnung optimaler Steinerbäume in der Ebene. Master’s thesis, Max-Planck-Institut für Informatik in Saarbrücken, Universität des Saarlandes (1998)
16.
Zurück zum Zitat Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)CrossRefMATHMathSciNet Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)CrossRefMATHMathSciNet
18.
Zurück zum Zitat Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, chapter 5, pp. 201–290. North-Holland, Amsterdam (2000)CrossRef Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, chapter 5, pp. 201–290. North-Holland, Amsterdam (2000)CrossRef
25.
Zurück zum Zitat Beardwoord, J., Halton, J.H., Hammersley, J.M.: The shortest path through many points. Math. Proc. Camb. Philos. Soc. 55(4), 299–327 (1959)CrossRef Beardwoord, J., Halton, J.H., Hammersley, J.M.: The shortest path through many points. Math. Proc. Camb. Philos. Soc. 55(4), 299–327 (1959)CrossRef
36.
Zurück zum Zitat Bopp, K.: Üeber das kürzeste Verbindungssystem zwischen vier Punkten. PhD thesis, Universität Göttingen (1879) Bopp, K.: Üeber das kürzeste Verbindungssystem zwischen vier Punkten. PhD thesis, Universität Göttingen (1879)
38.
39.
Zurück zum Zitat Boyce, W.M., Seery, J.B.: STEINER 72, An improved version of Cockayne and Schiller’s program STEINER for the minimal network problem. Technical report No. 35, Bell Laboratories, Murray Hill (1973) Boyce, W.M., Seery, J.B.: STEINER 72, An improved version of Cockayne and Schiller’s program STEINER for the minimal network problem. Technical report No. 35, Bell Laboratories, Murray Hill (1973)
46.
Zurück zum Zitat Brazil, M., Cole, T., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Minimal Steiner trees for 2 k × 2 k square lattices. J. Comb. Theory Ser. A 73, 91–110 (1996)CrossRefMATHMathSciNet Brazil, M., Cole, T., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Minimal Steiner trees for 2 k × 2 k square lattices. J. Comb. Theory Ser. A 73, 91–110 (1996)CrossRefMATHMathSciNet
47.
Zurück zum Zitat Brazil, M., Graham, R.L., Thomas, D.A., Zachariasen, M.: On the history of the Euclidean Steiner tree problem. Arch. Hist. Exact Sci. 68, 327–354 (2014)CrossRefMATHMathSciNet Brazil, M., Graham, R.L., Thomas, D.A., Zachariasen, M.: On the history of the Euclidean Steiner tree problem. Arch. Hist. Exact Sci. 68, 327–354 (2014)CrossRefMATHMathSciNet
58.
Zurück zum Zitat Brazil, M., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Full minimal Steiner trees on lattice sets. J. Comb. Theory Ser. A 78, 51–91 (1997)CrossRefMATHMathSciNet Brazil, M., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Full minimal Steiner trees on lattice sets. J. Comb. Theory Ser. A 78, 51–91 (1997)CrossRefMATHMathSciNet
59.
Zurück zum Zitat Brazil, M., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Minimal Steiner trees for rectangular arrays of lattice points. J. Comb. Theory Ser. A 79, 181–208 (1997)CrossRefMATHMathSciNet Brazil, M., Rubinstein, J.H., Thomas, D.A., Weng, J.F., Wormald, N.C.: Minimal Steiner trees for rectangular arrays of lattice points. J. Comb. Theory Ser. A 79, 181–208 (1997)CrossRefMATHMathSciNet
62.
Zurück zum Zitat Brazil, M., Thomas, D.A., Nielsen, B.K., Winter, P., Wulff-Nilsen, C., Zachariasen, M.: A novel approach to phylogenetic trees: d-dimensional geometric Steiner trees. Networks 53(2), 104–111 (2009)CrossRefMATHMathSciNet Brazil, M., Thomas, D.A., Nielsen, B.K., Winter, P., Wulff-Nilsen, C., Zachariasen, M.: A novel approach to phylogenetic trees: d-dimensional geometric Steiner trees. Networks 53(2), 104–111 (2009)CrossRefMATHMathSciNet
66.
68.
Zurück zum Zitat Brazil, M., Thomas, D.A., Weng, J.F.: Upper and lower bounds for the lengths of Steiner trees in 3-space. Geometriae Dedicata 109, 107–119 (2004)CrossRefMATHMathSciNet Brazil, M., Thomas, D.A., Weng, J.F.: Upper and lower bounds for the lengths of Steiner trees in 3-space. Geometriae Dedicata 109, 107–119 (2004)CrossRefMATHMathSciNet
78.
Zurück zum Zitat Cavalli-Sforza, L.L., Edwards, A.W.F.: Phylogenetic analysis: models and estimation procedures. Evolution 21, 550–570 (1967)CrossRef Cavalli-Sforza, L.L., Edwards, A.W.F.: Phylogenetic analysis: models and estimation procedures. Evolution 21, 550–570 (1967)CrossRef
80.
106.
Zurück zum Zitat Chung, F.R.K., Graham, R.L.: A new bound for Euclidean Steiner minimal trees. Ann. N. Y. Acad. Sci. 440(1), 328–346 (1985)CrossRefMathSciNet Chung, F.R.K., Graham, R.L.: A new bound for Euclidean Steiner minimal trees. Ann. N. Y. Acad. Sci. 440(1), 328–346 (1985)CrossRefMathSciNet
107.
Zurück zum Zitat Cieslik, D.: The vertex degrees of Steiner minimal trees in Minkowski planes. In: Bodendiek, R., Henn, R. (eds.) Topics in Combinatorics and Graph Theory, pp. 201–206. Physica-Verlag, Heidelberg (1990)CrossRef Cieslik, D.: The vertex degrees of Steiner minimal trees in Minkowski planes. In: Bodendiek, R., Henn, R. (eds.) Topics in Combinatorics and Graph Theory, pp. 201–206. Physica-Verlag, Heidelberg (1990)CrossRef
108.
Zurück zum Zitat Cieslik, D.: Shortest Connectivity – Introduction with Applications in Phylogeny. Combinatorial Optimization, vol. 17. Springer, New York (2004) Cieslik, D.: Shortest Connectivity – Introduction with Applications in Phylogeny. Combinatorial Optimization, vol. 17. Springer, New York (2004)
111.
112.
Zurück zum Zitat Cockayne, E.J., Hewgill, D.E.: Exact computation of Steiner minimal trees in the plane. Inf. Process. Lett. 22, 151–156 (1986)CrossRefMATHMathSciNet Cockayne, E.J., Hewgill, D.E.: Exact computation of Steiner minimal trees in the plane. Inf. Process. Lett. 22, 151–156 (1986)CrossRefMATHMathSciNet
113.
115.
Zurück zum Zitat Cockayne, E.J., Schiller, D.G.: Computation of Steiner minimal trees. In: Welsh, D.J.A., Woodall, D.R. (eds.) Combinatorics, pp. 52–71. Institute for Mathematics and Applications, Southend-on-Sea, Essex (1972) Cockayne, E.J., Schiller, D.G.: Computation of Steiner minimal trees. In: Welsh, D.J.A., Woodall, D.R. (eds.) Combinatorics, pp. 52–71. Institute for Mathematics and Applications, Southend-on-Sea, Essex (1972)
121.
Zurück zum Zitat Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT, Cambridge (2001)MATH Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT, Cambridge (2001)MATH
123.
Zurück zum Zitat Courant, R., Robbins, H.: What Is Mathematics? Oxford University Press, London (1941) Courant, R., Robbins, H.: What Is Mathematics? Oxford University Press, London (1941)
125.
Zurück zum Zitat Coxeter, H.S.M.: Introduction to Geometry. Wiley, New York (1969)MATH Coxeter, H.S.M.: Introduction to Geometry. Wiley, New York (1969)MATH
127.
Zurück zum Zitat de Berg, M.: Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry. Algorithms and Applications, 3rd edn. Springer, Berlin (2008) de Berg, M.: Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry. Algorithms and Applications, 3rd edn. Springer, Berlin (2008)
128.
Zurück zum Zitat de Wet, P.O.: Geometric Steiner minimal trees. PhD thesis, UNISA, Pretoria (2009) de Wet, P.O.: Geometric Steiner minimal trees. PhD thesis, UNISA, Pretoria (2009)
133.
Zurück zum Zitat Du, D.-Z., Gao, B., Graham, R.L., Liu, Z.-C., Wan, P.-J.: Minimum Steiner trees in normed planes. Discret. Comput. Geom. 9, 351–370 (1993)CrossRefMATHMathSciNet Du, D.-Z., Gao, B., Graham, R.L., Liu, Z.-C., Wan, P.-J.: Minimum Steiner trees in normed planes. Discret. Comput. Geom. 9, 351–370 (1993)CrossRefMATHMathSciNet
135.
137.
Zurück zum Zitat Du, D.-Z., Hwang, F.K., Song, G.D., Ting, G.Y.: Steiner minimal trees on sets of four points. Discret. Comput. Geom. 2, 401–414 (1987)CrossRefMATHMathSciNet Du, D.-Z., Hwang, F.K., Song, G.D., Ting, G.Y.: Steiner minimal trees on sets of four points. Discret. Comput. Geom. 2, 401–414 (1987)CrossRefMATHMathSciNet
138.
144.
Zurück zum Zitat Durand, M., Sadoc, J.-F., Weaire, D.: Maximum electrical conductivity of a network of uniform wires: the Lemlich law as an upper bound. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2045), 1269–1284 (2004)CrossRefMATHMathSciNet Durand, M., Sadoc, J.-F., Weaire, D.: Maximum electrical conductivity of a network of uniform wires: the Lemlich law as an upper bound. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2045), 1269–1284 (2004)CrossRefMATHMathSciNet
146.
Zurück zum Zitat Dutta, P., Khastgir, S.P., Roy, A.: Steiner trees and spanning trees in six-pin soap films. Am. J. Phys. 78, 215–221 (2010)CrossRef Dutta, P., Khastgir, S.P., Roy, A.: Steiner trees and spanning trees in six-pin soap films. Am. J. Phys. 78, 215–221 (2010)CrossRef
150.
Zurück zum Zitat Fampa, M., Anstreicher, K.M.: An improved algorithm for computing Steiner minimal trees in Euclidean d-space. Discret. Optim. 5, 530–540 (2008)CrossRefMATHMathSciNet Fampa, M., Anstreicher, K.M.: An improved algorithm for computing Steiner minimal trees in Euclidean d-space. Discret. Optim. 5, 530–540 (2008)CrossRefMATHMathSciNet
152.
Zurück zum Zitat Fermat, P.: Oeuvres, vol. 1. Gauthier-Villars, Paris (1891)MATH Fermat, P.: Oeuvres, vol. 1. Gauthier-Villars, Paris (1891)MATH
168.
Zurück zum Zitat Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing Steiner minimal trees. SIAM J. Appl. Math. 32(4), 835–859 (1977)CrossRefMATHMathSciNet Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing Steiner minimal trees. SIAM J. Appl. Math. 32(4), 835–859 (1977)CrossRefMATHMathSciNet
170.
Zurück zum Zitat Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)MATH Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)MATH
171.
Zurück zum Zitat Gauss, C.F., Schumacher, H.C.: Briefwechsel Zwischen C. F. Gauss und H. C. Schumacher. G. Esch (1861) Gauss, C.F., Schumacher, H.C.: Briefwechsel Zwischen C. F. Gauss und H. C. Schumacher. G. Esch (1861)
174.
Zurück zum Zitat Gergonne, J.D.: Solutions purement géométriques des problèmes de minimis proposés aux pages 196, 232 et 292 de ce volume, et de divers autres problèmes analogues. Annales de Mathématiques pures et appliquées 1, 375–384 (1811) Gergonne, J.D.: Solutions purement géométriques des problèmes de minimis proposés aux pages 196, 232 et 292 de ce volume, et de divers autres problèmes analogues. Annales de Mathématiques pures et appliquées 1, 375–384 (1811)
176.
Zurück zum Zitat Ghandehari, M., O’Neill, E.J.: The reflection property in normed linear planes with applications to generalized conics. Technical report TR – 351, University of Texas Arlington (2005) Ghandehari, M., O’Neill, E.J.: The reflection property in normed linear planes with applications to generalized conics. Technical report TR – 351, University of Texas Arlington (2005)
178.
Zurück zum Zitat Gilbert, E.N.: Minimum cost communication networks. Bell Syst. Tech. J. 46, 2209–2227 (1967)CrossRef Gilbert, E.N.: Minimum cost communication networks. Bell Syst. Tech. J. 46, 2209–2227 (1967)CrossRef
183.
Zurück zum Zitat Graham, R.L., F.K. Hwang. A remark on Steiner minimal trees. Bull. Inst. Math. Acad. Sinica 4(1), 177–182 (1976)MATHMathSciNet Graham, R.L., F.K. Hwang. A remark on Steiner minimal trees. Bull. Inst. Math. Acad. Sinica 4(1), 177–182 (1976)MATHMathSciNet
188.
Zurück zum Zitat Harris, F.C.: Steiner minimal trees: an introduction, parallel computation, and future work. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. 2, pp. 105–157. Kluwer Academic, New York (1998) Harris, F.C.: Steiner minimal trees: an introduction, parallel computation, and future work. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. 2, pp. 105–157. Kluwer Academic, New York (1998)
190.
Zurück zum Zitat Heinen, F.: Über Systeme von Kräften. G. D. Bädeker, Essen (1834) Heinen, F.: Über Systeme von Kräften. G. D. Bädeker, Essen (1834)
199.
Zurück zum Zitat Hoffmann, E.: Über das kürzeste Verbindungssystem zwischen vier Punkten der Ebene. In: Program des Königlichen Gymnasiums zu Wetzlar für das Schuljahr von Ostern 1889 bis Ostern 1890. Schnitzler (1890) Hoffmann, E.: Über das kürzeste Verbindungssystem zwischen vier Punkten der Ebene. In: Program des Königlichen Gymnasiums zu Wetzlar für das Schuljahr von Ostern 1889 bis Ostern 1890. Schnitzler (1890)
200.
Zurück zum Zitat Hofmann, J.E.: Elementare Lösung einer Minimumsaufgabe. Zeitschrift für mathematischen und naturwissenschaftligen Unterricht 60, 22–23 (1929) Hofmann, J.E.: Elementare Lösung einer Minimumsaufgabe. Zeitschrift für mathematischen und naturwissenschaftligen Unterricht 60, 22–23 (1929)
201.
Zurück zum Zitat Honsberger, R.: Mathematical Gems. Mathematical Association of America, Washington, DC (1973)MATH Honsberger, R.: Mathematical Gems. Mathematical Association of America, Washington, DC (1973)MATH
211.
Zurück zum Zitat Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics, vol. 53. Elsevier, Amsterdam (1992) Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics, vol. 53. Elsevier, Amsterdam (1992)
213.
218.
Zurück zum Zitat Innami, N., Kim, B.H., Mashiko, Y., Shiohama, K.: The Steiner ratio conjecture of Gilbert-Pollak may still be open. Algorithmica 57(4), 869–872 (2010)CrossRefMATHMathSciNet Innami, N., Kim, B.H., Mashiko, Y., Shiohama, K.: The Steiner ratio conjecture of Gilbert-Pollak may still be open. Algorithmica 57(4), 869–872 (2010)CrossRefMATHMathSciNet
219.
220.
Zurück zum Zitat Ivanov, A.O., Tuzhilin, A.A.: The Steiner ratio Gilbert-Pollak conjecture is still open. Algorithmica 62(1–2), 630–632 (2012)CrossRefMATHMathSciNet Ivanov, A.O., Tuzhilin, A.A.: The Steiner ratio Gilbert-Pollak conjecture is still open. Algorithmica 62(1–2), 630–632 (2012)CrossRefMATHMathSciNet
221.
Zurück zum Zitat Ivanov, A.O., Tuzhilin, A.A.: Du-Hwang characteristic area: catch-22. ArXiv e-prints (2014) Ivanov, A.O., Tuzhilin, A.A.: Du-Hwang characteristic area: catch-22. ArXiv e-prints (2014)
222.
Zurück zum Zitat Jalal, G., Krarup, J.: Geometrical solution to the Fermat problem with arbitrary weights. Ann. Oper. Res. 123, 67–104 (2003)CrossRefMATHMathSciNet Jalal, G., Krarup, J.: Geometrical solution to the Fermat problem with arbitrary weights. Ann. Oper. Res. 123, 67–104 (2003)CrossRefMATHMathSciNet
223.
Zurück zum Zitat Jarník, V., Kössler, M.: O minimálních grafeth obeahujících n daných bodú. Cas. Pest. Mat. a Fys. 63, 223–235 (1934) Jarník, V., Kössler, M.: O minimálních grafeth obeahujících n daných bodú. Cas. Pest. Mat. a Fys. 63, 223–235 (1934)
227.
Zurück zum Zitat Kahng, A.B., Mandoiu, I.I., Zelikovsky, A.Z.: Highly scalable algorithms for rectilinear and octilinear Steiner trees. In: Proceedings of the Asia and South Pacific Design Automation Conference, New York, pp. 827–833 (2003) Kahng, A.B., Mandoiu, I.I., Zelikovsky, A.Z.: Highly scalable algorithms for rectilinear and octilinear Steiner trees. In: Proceedings of the Asia and South Pacific Design Automation Conference, New York, pp. 827–833 (2003)
233.
Zurück zum Zitat Kirszenblat, D.: The Steiner ratio conjecture for eight points. Master’s thesis, The University of Melbourne (2014) Kirszenblat, D.: The Steiner ratio conjecture for eight points. Master’s thesis, The University of Melbourne (2014)
239.
Zurück zum Zitat Krarup, J., Vajda, S.: On Torricelli’s geometrical solution to a problem of Fermat. IMA J. Manage. Math. 8(3), 215–224 (1997)CrossRefMATHMathSciNet Krarup, J., Vajda, S.: On Torricelli’s geometrical solution to a problem of Fermat. IMA J. Manage. Math. 8(3), 215–224 (1997)CrossRefMATHMathSciNet
240.
Zurück zum Zitat Kupitz, Y.S., Martini, H.: Geometric aspects of the generalized Fermat-Torricelli problem. In: Barany, I., Boroczky, K. (eds.) Bolyai Society Mathematical Studies, 6: Intuitive Geometry, pp. 55–127. Janos Bolyai Mathematical Society, Budapest (1997) Kupitz, Y.S., Martini, H.: Geometric aspects of the generalized Fermat-Torricelli problem. In: Barany, I., Boroczky, K. (eds.) Bolyai Society Mathematical Studies, 6: Intuitive Geometry, pp. 55–127. Janos Bolyai Mathematical Society, Budapest (1997)
241.
Zurück zum Zitat Lawlor, G., Morgan, F.: Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms. Pac. J. Math. 166, 55–83 (1994)CrossRefMATHMathSciNet Lawlor, G., Morgan, F.: Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms. Pac. J. Math. 166, 55–83 (1994)CrossRefMATHMathSciNet
252.
Zurück zum Zitat Levy, A.: Energy-minimizing networks meet only in threes. J. Undergrad. Math. 22, 53–59 (1990) Levy, A.: Energy-minimizing networks meet only in threes. J. Undergrad. Math. 22, 53–59 (1990)
273.
Zurück zum Zitat Martini, H., Swanepoel, K.J., Weiß, G.: The geometry of Minkowski spaces – a survey. Part I. Expositiones Mathematicae 19(2), 97–142 (2001)CrossRefMATH Martini, H., Swanepoel, K.J., Weiß, G.: The geometry of Minkowski spaces – a survey. Part I. Expositiones Mathematicae 19(2), 97–142 (2001)CrossRefMATH
274.
Zurück zum Zitat Martini, H., Swanepoel, K.J., Weiß, G.: The Fermat-Torricelli problem in normed planes and spaces. J. Optim. Theory Appl. 115, 283–314 (2002)CrossRefMATHMathSciNet Martini, H., Swanepoel, K.J., Weiß, G.: The Fermat-Torricelli problem in normed planes and spaces. J. Optim. Theory Appl. 115, 283–314 (2002)CrossRefMATHMathSciNet
276.
Zurück zum Zitat Mehlhos, S.: Simple counter examples for the unsolvability of the Fermat- and Steiner-Weber-problem by compass and ruler. Beiträge zur Algebra und Geometrie 41(1), 151–158 (2000)MATHMathSciNet Mehlhos, S.: Simple counter examples for the unsolvability of the Fermat- and Steiner-Weber-problem by compass and ruler. Beiträge zur Algebra und Geometrie 41(1), 151–158 (2000)MATHMathSciNet
294.
Zurück zum Zitat Nielsen, B.K., Winter, P., Zachariasen, M.: An exact algorithm for the uniformly-oriented Steiner tree problem. In: Proceedings of the 10th European Symposium on Algorithms, Rome. Lecture Notes in Computer Science, vol. 2461, pp. 760–772. Springer, Berlin/Heidelberg (2002) Nielsen, B.K., Winter, P., Zachariasen, M.: An exact algorithm for the uniformly-oriented Steiner tree problem. In: Proceedings of the 10th European Symposium on Algorithms, Rome. Lecture Notes in Computer Science, vol. 2461, pp. 760–772. Springer, Berlin/Heidelberg (2002)
310.
Zurück zum Zitat Polzin, T., Vahdati Daneshmand, S.: On Steiner trees and minimum spanning trees in hypergraphs. Oper. Res. Lett. 31, 12–20 (2003)CrossRefMATHMathSciNet Polzin, T., Vahdati Daneshmand, S.: On Steiner trees and minimum spanning trees in hypergraphs. Oper. Res. Lett. 31, 12–20 (2003)CrossRefMATHMathSciNet
311.
Zurück zum Zitat Polzin, T., Vahdati Daneshmand, S.: Approaches to the Steiner problem in networks. Lect. Notes Comput. Sci. 5515, 81–103 (2009)CrossRef Polzin, T., Vahdati Daneshmand, S.: Approaches to the Steiner problem in networks. Lect. Notes Comput. Sci. 5515, 81–103 (2009)CrossRef
313.
Zurück zum Zitat Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction, 2nd edn. Springer, New York (1988) Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction, 2nd edn. Springer, New York (1988)
314.
Zurück zum Zitat Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957)CrossRef Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957)CrossRef
326.
327.
Zurück zum Zitat Rubinstein, J.H., Thomas, D.A.: Graham’s problem on shortest networks for points on a circle. Algorithmica 7(1–6), 193–218 (1992)CrossRefMATHMathSciNet Rubinstein, J.H., Thomas, D.A.: Graham’s problem on shortest networks for points on a circle. Algorithmica 7(1–6), 193–218 (1992)CrossRefMATHMathSciNet
329.
Zurück zum Zitat Rubinstein, J.H., Thomas, D.A., Weng, J.F.: Minimum networks for four points in space. Geometriae Dedicata 93, 57–70 (2002)CrossRefMATHMathSciNet Rubinstein, J.H., Thomas, D.A., Weng, J.F.: Minimum networks for four points in space. Geometriae Dedicata 93, 57–70 (2002)CrossRefMATHMathSciNet
330.
Zurück zum Zitat Rubinstein, J.H., Thomas, D.A., Wormald, N.C.: Steiner trees for terminals constrained to curves. SIAM J. Discret. Math. 10(1), 1–17 (1997)CrossRefMATHMathSciNet Rubinstein, J.H., Thomas, D.A., Wormald, N.C.: Steiner trees for terminals constrained to curves. SIAM J. Discret. Math. 10(1), 1–17 (1997)CrossRefMATHMathSciNet
349.
Zurück zum Zitat Smith, J.M., Jang, Y., Kim, M.K.: Steiner minimal trees, twist angles, and the protein folding problem. PROTEINS: Struct. Funct. Bioinf. 66(4), 889–902 (2007)CrossRef Smith, J.M., Jang, Y., Kim, M.K.: Steiner minimal trees, twist angles, and the protein folding problem. PROTEINS: Struct. Funct. Bioinf. 66(4), 889–902 (2007)CrossRef
352.
Zurück zum Zitat Smith, W.D., Smith, J.M.: On the Steiner ratio in Euclidean 3-space. J. Comb. Theory Ser. A 69, 301–332 (1995)CrossRefMATH Smith, W.D., Smith, J.M.: On the Steiner ratio in Euclidean 3-space. J. Comb. Theory Ser. A 69, 301–332 (1995)CrossRefMATH
353.
357.
Zurück zum Zitat Stückelberger, J.A., Heinimann, H.R., Chung, W., Ulber, M.: Automatic road-network planning for multiple objectives. In: Proceedings of the 29th Council on Forest Engineering Conference, Coeur d’Alene, Idaho, vol. 30, pp. 233–248 (2006) Stückelberger, J.A., Heinimann, H.R., Chung, W., Ulber, M.: Automatic road-network planning for multiple objectives. In: Proceedings of the 29th Council on Forest Engineering Conference, Coeur d’Alene, Idaho, vol. 30, pp. 233–248 (2006)
367.
Zurück zum Zitat Thompson, A.C.: Minkowski Geometry. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1996)CrossRefMATH Thompson, A.C.: Minkowski Geometry. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1996)CrossRefMATH
370.
Zurück zum Zitat Toppur, B., Smith, J.M.: A sausage heuristic for Steiner minimal trees in three-dimensional Euclidean space. J. Math. Model. Algorithms 4(2), 199–217 (2005)CrossRefMATHMathSciNet Toppur, B., Smith, J.M.: A sausage heuristic for Steiner minimal trees in three-dimensional Euclidean space. J. Math. Model. Algorithms 4(2), 199–217 (2005)CrossRefMATHMathSciNet
371.
Zurück zum Zitat Torricelli, E.: De maximis et minimis. In: Loria, G., Vassura, G. (eds.) Opere di Evangelista Torricelli. G. Montanari, Faenza (1919) Torricelli, E.: De maximis et minimis. In: Loria, G., Vassura, G. (eds.) Opere di Evangelista Torricelli. G. Montanari, Faenza (1919)
386.
Zurück zum Zitat Warme, D.M.: Spanning trees in hypergraphs with applications to Steiner trees. PhD thesis, University of Virginia (1998) Warme, D.M.: Spanning trees in hypergraphs with applications to Steiner trees. PhD thesis, University of Virginia (1998)
388.
Zurück zum Zitat Warme, D.M., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree problems: a computational study. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees, pp. 81–116. Kluwer Academic, Boston (2000)CrossRef Warme, D.M., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree problems: a computational study. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees, pp. 81–116. Kluwer Academic, Boston (2000)CrossRef
405.
Zurück zum Zitat Winter, P.: Optimal Steiner hull algorithm. Comput. Geom. Theory Appl. 23(2), 163–169 (2002)CrossRefMATH Winter, P.: Optimal Steiner hull algorithm. Comput. Geom. Theory Appl. 23(2), 163–169 (2002)CrossRefMATH
407.
415.
Zurück zum Zitat Xue, G., Du, D.-Z.: An O(nlogn) average time algorithm for computing the shortest network under a given topology. Algorithmica 23, 354–362 (1999)CrossRefMATHMathSciNet Xue, G., Du, D.-Z.: An O(nlogn) average time algorithm for computing the shortest network under a given topology. Algorithmica 23, 354–362 (1999)CrossRefMATHMathSciNet
426.
Zurück zum Zitat Yue, M.: A report on the Steiner ratio conjecture. OR Transl. 4, 1–21 (2000) Yue, M.: A report on the Steiner ratio conjecture. OR Transl. 4, 1–21 (2000)
Metadaten
Titel
Euclidean and Minkowski Steiner Trees
verfasst von
Marcus Brazil
Martin Zachariasen
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-13915-9_1