Skip to main content
Erschienen in:

29.06.2021

Evaluating Action Durations for Adaptive Traffic Signal Control Based On Deep Q-Learning

verfasst von: Seyit Alperen CELTEK, Akif DURDU, Muzamil Eltejani Mohammed ALI

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Adaptive traffic signal control is the control technique that adjusts the signal times according to traffic conditions and manages the traffic flow. Reinforcement learning is one of the best algorithms used for adaptive traffic signal controllers. Despite many successful studies about Reinforcement Learning based traffic control, there remains uncertainty about what the best actions to actualize adaptive traffic signal control. This paper seeks to understand the performance differences in different action durations for adaptive traffic management. Deep Q-Learning has been applied to a traffic environment for adaptive learning. This study evaluates five different action durations. Also, this study proposes a novel approach to the Deep Q-Learning based adaptive traffic control system for determine the best action. Our approach does not just aim to minimize delay time by waiting time during the red-light signal also aims to decrease delay time caused by vehicles slowing down when approaching the intersection and caused by the required time to accelerate after the green light signal. Thus the proposed strategy uses not just information of intersection also uses the data of adjacent intersection as an input. The performances of these methods are evaluated in real-time through the Simulation of Urban Mobility traffic simulator. The output of this paper indicate that the short action times increase the traffic control system performances despite more yellow signal duration. The results clearly shows that proposed method decreases the delay time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Ge, H., Song, Y., Wu, C., Ren, J., Tan, G.: Cooperative deep Q-learning with Q-value transfer for multi-intersection signal control. IEEE Access 7, 40797–40809 (2019)CrossRef Ge, H., Song, Y., Wu, C., Ren, J., Tan, G.: Cooperative deep Q-learning with Q-value transfer for multi-intersection signal control. IEEE Access 7, 40797–40809 (2019)CrossRef
2.
Zurück zum Zitat Spall, J.C., Chin, D.C.: Traffic-responsive signal timing for system-wide traffic control. Transportation Research Part C: Emerging Technologies 5(3–4), 153–163 (1997)CrossRef Spall, J.C., Chin, D.C.: Traffic-responsive signal timing for system-wide traffic control. Transportation Research Part C: Emerging Technologies 5(3–4), 153–163 (1997)CrossRef
3.
Zurück zum Zitat McCrea, J., Moutari, S.: A hybrid macroscopic-based model for traffic flow in road networks. Eur. J. Oper. Res. 207(2), 676–684 (2010)MathSciNetCrossRef McCrea, J., Moutari, S.: A hybrid macroscopic-based model for traffic flow in road networks. Eur. J. Oper. Res. 207(2), 676–684 (2010)MathSciNetCrossRef
4.
Zurück zum Zitat Ye, B.-L., Wu, W., Gao, H., Lu, Y., Cao, Q., Zhu, L.: Stochastic model predictive control for urban traffic networks. Appl. Sci. 7(6), 588 (2017)CrossRef Ye, B.-L., Wu, W., Gao, H., Lu, Y., Cao, Q., Zhu, L.: Stochastic model predictive control for urban traffic networks. Appl. Sci. 7(6), 588 (2017)CrossRef
5.
Zurück zum Zitat Bull, A., Thomson, I.: "Urban traffic congestion: its economic and social causes and consequences," Cepal Review (2002) Bull, A., Thomson, I.: "Urban traffic congestion: its economic and social causes and consequences," Cepal Review (2002)
6.
Zurück zum Zitat Garcia-Nieto, J., Olivera, A.C., Alba, E.: Optimal cycle program of traffic lights with particle swarm optimization. IEEE Trans. Evol. Comput. 17(6), 823–839 (2013)CrossRef Garcia-Nieto, J., Olivera, A.C., Alba, E.: Optimal cycle program of traffic lights with particle swarm optimization. IEEE Trans. Evol. Comput. 17(6), 823–839 (2013)CrossRef
7.
Zurück zum Zitat Zhou, P., Fang, Z., Dong, H., Liu, J., & Pan, S.: "Data analysis with multi-objective optimization algorithm: A study in smart traffic signal system," in 2017 IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA),Int. J. Softw. Eng. its Appl. (SERA), pp. 307-310. (2017) Zhou, P., Fang, Z., Dong, H., Liu, J., & Pan, S.: "Data analysis with multi-objective optimization algorithm: A study in smart traffic signal system," in 2017 IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA),Int. J. Softw. Eng. its Appl. (SERA), pp. 307-310. (2017)
8.
Zurück zum Zitat HCM, "Highway capacity manual," in "Washington, DC," vol. 2. (2002) HCM, "Highway capacity manual," in "Washington, DC," vol. 2. (2002)
9.
Zurück zum Zitat Araghi, S., Khosravi, A., Creighton, D.: A review on computational intelligence methods for controlling traffic signal timing. Expert Syst. Appl. 42(3), 1538–1550 (2015)CrossRef Araghi, S., Khosravi, A., Creighton, D.: A review on computational intelligence methods for controlling traffic signal timing. Expert Syst. Appl. 42(3), 1538–1550 (2015)CrossRef
10.
Zurück zum Zitat Webster, F., "Traffic signal settings, road research technical paper no. 39," Road Research Laboratory, (1958) Webster, F., "Traffic signal settings, road research technical paper no. 39," Road Research Laboratory, (1958)
11.
Zurück zum Zitat Wei, H., Zheng, G., Gayah, V., Li, Z.: "A survey on traffic signal control methods," arXiv preprint, 1904.08117 (2019) Wei, H., Zheng, G., Gayah, V., Li, Z.: "A survey on traffic signal control methods," arXiv preprint, 1904.08117 (2019)
12.
Zurück zum Zitat Hunt, P., Robertson, D., Bretherton, R., Royle, M. C.: "The SCOOT on-line traffic signal optimisation technique," Traffic Engineering & Control 23(4) (1982) Hunt, P., Robertson, D., Bretherton, R., Royle, M. C.: "The SCOOT on-line traffic signal optimisation technique," Traffic Engineering & Control 23(4) (1982)
13.
Zurück zum Zitat Lowrie, P.: "SCATS–A Traffic Responsive Method of Controlling Urban Traffic. Roads and Traffic Authority, Sydney," New South Wales, Australia (1990) Lowrie, P.: "SCATS–A Traffic Responsive Method of Controlling Urban Traffic. Roads and Traffic Authority, Sydney," New South Wales, Australia (1990)
14.
Zurück zum Zitat Roess, R.P., Prassas, E. S., McShane W. R.: Traffic Engineering. Pearson/Prentice Hall, (2004) Roess, R.P., Prassas, E. S., McShane W. R.: Traffic Engineering. Pearson/Prentice Hall, (2004)
15.
Zurück zum Zitat Zhao, D., Dai, Y., Zhang, Z.: “Computational intelligence in urban traffic signal control: A survey,” IEEE Transactions on Systems, Man, and Cybernetics. Part C (Applications and Reviews) 42(4), 485–494 (2012) Zhao, D., Dai, Y., Zhang, Z.: “Computational intelligence in urban traffic signal control: A survey,” IEEE Transactions on Systems, Man, and Cybernetics. Part C (Applications and Reviews) 42(4), 485–494 (2012)
16.
Zurück zum Zitat Ali, M. E. M., Durdu, A., Çeltek, S. A., Gültekin, S. S.: "Fuzzy logic and webster's optimal cycle based decentralized coordinated adaptive traffic control method," (2020) Ali, M. E. M., Durdu, A., Çeltek, S. A., Gültekin, S. S.: "Fuzzy logic and webster's optimal cycle based decentralized coordinated adaptive traffic control method," (2020)
17.
Zurück zum Zitat Joo H., Ahmed, S. H., Lim, Y.: "Traffic signal control for smart cities using reinforcement learning," Comput. Commun. (2020) Joo H., Ahmed, S. H., Lim, Y.: "Traffic signal control for smart cities using reinforcement learning," Comput. Commun. (2020)
18.
Zurück zum Zitat Wang, H., Sun, H., Li, C., Rahnamayan, S., Pan, J.-S.: Diversity enhanced particle swarm optimization with neighborhood search. Inf. Sci. 223, 119–135 (2013)MathSciNetCrossRef Wang, H., Sun, H., Li, C., Rahnamayan, S., Pan, J.-S.: Diversity enhanced particle swarm optimization with neighborhood search. Inf. Sci. 223, 119–135 (2013)MathSciNetCrossRef
19.
Zurück zum Zitat Dimitriou, L., Tsekeris, T., Stathopoulos, A.: Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow. Transportation Research Part C: Emerging Technologies 16(5), 554–573 (2008)CrossRef Dimitriou, L., Tsekeris, T., Stathopoulos, A.: Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow. Transportation Research Part C: Emerging Technologies 16(5), 554–573 (2008)CrossRef
20.
Zurück zum Zitat Jovanović, A., Nikolić, M., Teodorović, D.: Area-wide urban traffic control: A Bee Colony Optimization approach. Transportation Research Part C: Emerging Technologies 77, 329–350 (2017)CrossRef Jovanović, A., Nikolić, M., Teodorović, D.: Area-wide urban traffic control: A Bee Colony Optimization approach. Transportation Research Part C: Emerging Technologies 77, 329–350 (2017)CrossRef
21.
Zurück zum Zitat De Oliveira, M.B. de Almeida Neto, A.: "Optimization of traffic lights timing based on Artificial Neural Networks," in 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), IEEE, pp. 1921–1922 (2014) De Oliveira, M.B. de Almeida Neto, A.: "Optimization of traffic lights timing based on Artificial Neural Networks," in 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), IEEE, pp. 1921–1922 (2014)
22.
Zurück zum Zitat Celtek, S. A., Durdu, A., Alı, M. E. M.: "Real-time Traffic Signal Control with Swarm Optimization Methods," Measurement (2020) Celtek, S. A., Durdu, A., Alı, M. E. M.: "Real-time Traffic Signal Control with Swarm Optimization Methods," Measurement (2020)
23.
Zurück zum Zitat El-Tantawy, S., Abdulhai, B., Abdelgawad, H.: Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC): methodology and large-scale application on downtown Toronto. IEEE Trans. Intell. Transp. Syst. 14(3), 1140–1150 (2013)CrossRef El-Tantawy, S., Abdulhai, B., Abdelgawad, H.: Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC): methodology and large-scale application on downtown Toronto. IEEE Trans. Intell. Transp. Syst. 14(3), 1140–1150 (2013)CrossRef
24.
Zurück zum Zitat Abdoos, M.: "Fuzzy Graph and Collective Multi-Agent Reinforcement Learning for Traffic Signals Control," IEEE Intelligent Systems, (2020) Abdoos, M.: "Fuzzy Graph and Collective Multi-Agent Reinforcement Learning for Traffic Signals Control," IEEE Intelligent Systems, (2020)
25.
Zurück zum Zitat Wiering, M.A.: "Multi-agent reinforcement learning for traffic light control," in Machine Learning: Proceedings of the Seventeenth International Conference (ICML'2000) pp. 1151–1158 (2000) Wiering, M.A.: "Multi-agent reinforcement learning for traffic light control," in Machine Learning: Proceedings of the Seventeenth International Conference (ICML'2000) pp. 1151–1158 (2000)
26.
Zurück zum Zitat Abdoos, M., Mozayani, N., Bazzan, A. L.: "Traffic light control in non-stationary environments based on multi agent Q-learning," in 2011 14th International IEEE conference on intelligent transportation systems (ITSC) IEEE, pp. 1580–1585 (2011) Abdoos, M., Mozayani, N., Bazzan, A. L.: "Traffic light control in non-stationary environments based on multi agent Q-learning," in 2011 14th International IEEE conference on intelligent transportation systems (ITSC) IEEE, pp. 1580–1585 (2011)
27.
Zurück zum Zitat Chin, Y. K., Kow, W. Y., Khong, W. L., Tan, M. K., Teo, K. T. K.: "Q-learning traffic signal optimization within multiple intersections traffic network," in 2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation IEEE, pp. 343–348 (2012) Chin, Y. K., Kow, W. Y., Khong, W. L., Tan, M. K., Teo, K. T. K.: "Q-learning traffic signal optimization within multiple intersections traffic network," in 2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation IEEE, pp. 343–348 (2012)
28.
Zurück zum Zitat Genders, W., Razavi, S.: Asynchronous n-step q-learning adaptive traffic signal control. Journal of Intelligent Transportation Systems 23(4), 319–331 (2019)CrossRef Genders, W., Razavi, S.: Asynchronous n-step q-learning adaptive traffic signal control. Journal of Intelligent Transportation Systems 23(4), 319–331 (2019)CrossRef
29.
Zurück zum Zitat Liang, X., Du, X., Wang, G., Han, Z.: A deep reinforcement learning network for traffic light cycle control. IEEE Trans. Veh. Technol. 68(2), 1243–1253 (2019)CrossRef Liang, X., Du, X., Wang, G., Han, Z.: A deep reinforcement learning network for traffic light cycle control. IEEE Trans. Veh. Technol. 68(2), 1243–1253 (2019)CrossRef
30.
Zurück zum Zitat Tan, T., Bao, F., Deng, Y., Jin, A., Dai, Q., Wang, J.: Cooperative deep reinforcement learning for large-scale traffic grid signal control. IEEE transactions on cybernetics 50(6), 2687–2700 (2019)CrossRef Tan, T., Bao, F., Deng, Y., Jin, A., Dai, Q., Wang, J.: Cooperative deep reinforcement learning for large-scale traffic grid signal control. IEEE transactions on cybernetics 50(6), 2687–2700 (2019)CrossRef
31.
Zurück zum Zitat Haydari, A., Yilmaz, Y.: "Deep Reinforcement Learning for Intelligent Transportation Systems: A Survey (2020) Haydari, A., Yilmaz, Y.: "Deep Reinforcement Learning for Intelligent Transportation Systems: A Survey (2020)
32.
Zurück zum Zitat Aslani, M., Seipel, S., Mesgari, M.S., Wiering, M.: Traffic signal optimization through discrete and continuous reinforcement learning with robustness analysis in downtown Tehran. Adv. Eng. Inform. 38, 639–655 (2018)CrossRef Aslani, M., Seipel, S., Mesgari, M.S., Wiering, M.: Traffic signal optimization through discrete and continuous reinforcement learning with robustness analysis in downtown Tehran. Adv. Eng. Inform. 38, 639–655 (2018)CrossRef
33.
Zurück zum Zitat Aslani, M., Mesgari, M.S., Wiering, M.: Adaptive traffic signal control with actor-critic methods in a real-world traffic network with different traffic disruption events. Transportation Research Part C: Emerging Technologies 85, 732–752 (2017)CrossRef Aslani, M., Mesgari, M.S., Wiering, M.: Adaptive traffic signal control with actor-critic methods in a real-world traffic network with different traffic disruption events. Transportation Research Part C: Emerging Technologies 85, 732–752 (2017)CrossRef
34.
Zurück zum Zitat Xu, L. H., Xia, X. H. Luo, Q.: "The study of reinforcement learning for traffic self-adaptive control under multiagent markov game environment," Mathematical Problems in Engineering, vol. 2013 (2013) Xu, L. H., Xia, X. H. Luo, Q.: "The study of reinforcement learning for traffic self-adaptive control under multiagent markov game environment," Mathematical Problems in Engineering, vol. 2013 (2013)
35.
Zurück zum Zitat Gokulan, B.P., Srinivasan, D.: Distributed geometric fuzzy multiagent urban traffic signal control. IEEE Trans. Intell. Transp. Syst. 11(3), 714–727 (2010)CrossRef Gokulan, B.P., Srinivasan, D.: Distributed geometric fuzzy multiagent urban traffic signal control. IEEE Trans. Intell. Transp. Syst. 11(3), 714–727 (2010)CrossRef
36.
Zurück zum Zitat Chin, Y. K., Lee, L. K., Bolong, N., Yang, S. S., & Teo, K. T. K.: "Exploring Q-learning optimization in traffic signal timing plan management," in 2011 third international conference on computational intelligence, communication systems and networks, IEEE, pp. 269–274 (2011) Chin, Y. K., Lee, L. K., Bolong, N., Yang, S. S., & Teo, K. T. K.: "Exploring Q-learning optimization in traffic signal timing plan management," in 2011 third international conference on computational intelligence, communication systems and networks, IEEE, pp. 269–274 (2011)
37.
Zurück zum Zitat Wei, H., Zheng, G., Yao, H., & Li, Z.: "Intellilight: A reinforcement learning approach for intelligent traffic light control," in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2496–2505 (2018) Wei, H., Zheng, G., Yao, H., & Li, Z.: "Intellilight: A reinforcement learning approach for intelligent traffic light control," in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2496–2505 (2018)
38.
Zurück zum Zitat Mannion, P., Duggan, J., Howley, E.: "An experimental review of reinforcement learning algorithms for adaptive traffic signal control," in Autonomic road transport support systems: Springer, pp. 47–66 (2016) Mannion, P., Duggan, J., Howley, E.: "An experimental review of reinforcement learning algorithms for adaptive traffic signal control," in Autonomic road transport support systems: Springer, pp. 47–66 (2016)
39.
Zurück zum Zitat Brys, T., Pham, T.T., Taylor, M.E.: Distributed learning and multi-objectivity in traffic light control. Connect. Sci. 26(1), 65–83 (2014)CrossRef Brys, T., Pham, T.T., Taylor, M.E.: Distributed learning and multi-objectivity in traffic light control. Connect. Sci. 26(1), 65–83 (2014)CrossRef
40.
Zurück zum Zitat Arel, I., Liu, C., Urbanik, T., Kohls, A.G.: Reinforcement learning-based multi-agent system for network traffic signal control. IET Intel. Transport Syst. 4(2), 128–135 (2010)CrossRef Arel, I., Liu, C., Urbanik, T., Kohls, A.G.: Reinforcement learning-based multi-agent system for network traffic signal control. IET Intel. Transport Syst. 4(2), 128–135 (2010)CrossRef
41.
Zurück zum Zitat Chu, T., Wang, J., Codecà, L., Li, Z.: Multi-agent deep reinforcement learning for large-scale traffic signal control. IEEE Trans. Intell. Transp. Syst. 21(3), 1086–1095 (2019)CrossRef Chu, T., Wang, J., Codecà, L., Li, Z.: Multi-agent deep reinforcement learning for large-scale traffic signal control. IEEE Trans. Intell. Transp. Syst. 21(3), 1086–1095 (2019)CrossRef
42.
Zurück zum Zitat Khamis, M. A., Gomaa, W., El-Mahdy, A., & Shoukry, A.: "Adaptive traffic control system based on Bayesian probability interpretation," IEEE, pp. 151–156. (2012) Khamis, M. A., Gomaa, W., El-Mahdy, A., & Shoukry, A.: "Adaptive traffic control system based on Bayesian probability interpretation," IEEE, pp. 151–156. (2012)
43.
Zurück zum Zitat Choe, C. J., Baek, S., Woon, B., & Kong, S. H.: "Deep Q Learning with LSTM for Traffic Light Control," in 2018 24th Asia-Pacific Conference on Communications (APCC), IEEE, pp. 331–336 (2018) Choe, C. J., Baek, S., Woon, B., & Kong, S. H.: "Deep Q Learning with LSTM for Traffic Light Control," in 2018 24th Asia-Pacific Conference on Communications (APCC), IEEE, pp. 331–336 (2018)
44.
Zurück zum Zitat Sutton R. S., Barto, A. G.: Reinforcement learning: An introduction. MIT press, (2018) Sutton R. S., Barto, A. G.: Reinforcement learning: An introduction. MIT press, (2018)
45.
Zurück zum Zitat Jang, B., Kim, M., Harerimana, G., Kim, J.W.: Q-learning algorithms: A comprehensive classification and applications. IEEE Access 7, 133653–133667 (2019)CrossRef Jang, B., Kim, M., Harerimana, G., Kim, J.W.: Q-learning algorithms: A comprehensive classification and applications. IEEE Access 7, 133653–133667 (2019)CrossRef
46.
Zurück zum Zitat Dion, F., Rakha, H., Kang, Y.-S.: Comparison of delay estimates at under-saturated and over-saturated pre-timed signalized intersections. Transportation Research Part B: Methodological 38(2), 99–122 (2004)CrossRef Dion, F., Rakha, H., Kang, Y.-S.: Comparison of delay estimates at under-saturated and over-saturated pre-timed signalized intersections. Transportation Research Part B: Methodological 38(2), 99–122 (2004)CrossRef
47.
Zurück zum Zitat Yau, K.-L.A., Qadir, J., Khoo, H.L., Ling, M.H., Komisarczuk, P.: A survey on reinforcement learning models and algorithms for traffic signal control. ACM Computing Surveys (CSUR) 50(3), 1–38 (2017)CrossRef Yau, K.-L.A., Qadir, J., Khoo, H.L., Ling, M.H., Komisarczuk, P.: A survey on reinforcement learning models and algorithms for traffic signal control. ACM Computing Surveys (CSUR) 50(3), 1–38 (2017)CrossRef
48.
Zurück zum Zitat Krajzewicz, D., Hertkorn, G. Rössel, C. Wagner, P.: "SUMO (Simulation of Urban MObility)-an open-source traffic simulation," in Proceedings of the 4th middle East Symposium on Simulation and Modelling (MESM20002), pp. 183–187 (2002) Krajzewicz, D., Hertkorn, G. Rössel, C. Wagner, P.: "SUMO (Simulation of Urban MObility)-an open-source traffic simulation," in Proceedings of the 4th middle East Symposium on Simulation and Modelling (MESM20002), pp. 183–187 (2002)
49.
Zurück zum Zitat Kotusevski, G., Hawick, K.: "A review of traffic simulation software," (2009) Kotusevski, G., Hawick, K.: "A review of traffic simulation software," (2009)
50.
Zurück zum Zitat Vidali, A. Crociani, L., Vizzari, G., Bandini, S.: "A Deep Reinforcement Learning Approach to Adaptive Traffic Lights Management," in WOA, pp. 42–50. (2012) Vidali, A. Crociani, L., Vizzari, G., Bandini, S.: "A Deep Reinforcement Learning Approach to Adaptive Traffic Lights Management," in WOA, pp. 42–50. (2012)
51.
Zurück zum Zitat Rinne, R.: The Weibull distribution: a handbook. CRC press, (2008) Rinne, R.: The Weibull distribution: a handbook. CRC press, (2008)
Metadaten
Titel
Evaluating Action Durations for Adaptive Traffic Signal Control Based On Deep Q-Learning
verfasst von
Seyit Alperen CELTEK
Akif DURDU
Muzamil Eltejani Mohammed ALI
Publikationsdatum
29.06.2021
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 3/2021
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-021-00262-5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.