Skip to main content

2024 | OriginalPaper | Buchkapitel

Evaluating Machine Learning Algorithms for New Indian Parliament Building Sentiment Analysis

verfasst von : Jatinderkumar R. Saini, Shraddha Vaidya, Shailesh Kasande

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Indian Parliament is a great example of the nation's democratic ideals. The parliament with its upper (Rajya Sabha) and lower house (Lok Sabha) forms the highest law-making body of the nation. The old parliament building, constructed during British era, has structural issues and is insufficient to accommodate the increasing number of members of parliament. Thus, the ruling government of India decided to construct the new building with superior infrastructure which can accommodate the increasing number of members of parliament, architecture and Indian sculptures. The construction of new building led to controversies from various stakeholders of the country and neighbouring countries. The mixed opinions about the construction of new parliament building generated chaos leading to environmentalists, and conservationists filing case at Supreme Court of India to pause the construction of new building. Thus, it is essential to study the various sentiments of the civilians of India and develop a model with machine learning techniques that could classify the sentiments into positive, negative and neutral. To fill up this gap, authors in this research have generated the dataset, namely, New Indian Parliament Dataset-URL (NIPD-U) and New Indian Parliament Dataset-Paragraph (NIPD-P) from authentic web sources related to India’s new parliament building, and have developed machine learning models with five classifiers to classify the text into positive and negative sentiments. It was observed that for URL-based classification Naïve Bayes (NB) classifier outperformed other classifiers with 91% of accuracy. Further, paragraph-wise results showed that Random Forest (RF) showed highest accuracy of 92.34%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Adhya, S., Sanyal, D.K.: What does the Indian Parliament Discuss? An exploratory analysis of the question hour in the Lok Sabha. In: 1st Workshop on Natural Language Processing for Political Sciences, PoliticalNLP 2022 - Proceedings, as part of the 13th Edition of the Language Resources and Evaluation Conference, LREC 2022, pp. 72–78 (2022) Adhya, S., Sanyal, D.K.: What does the Indian Parliament Discuss? An exploratory analysis of the question hour in the Lok Sabha. In: 1st Workshop on Natural Language Processing for Political Sciences, PoliticalNLP 2022 - Proceedings, as part of the 13th Edition of the Language Resources and Evaluation Conference, LREC 2022, pp. 72–78 (2022)
4.
Zurück zum Zitat Bharatharaj, J., Sasthan Kutty, S.K., Munisamy, A., Krägeloh, C.U.: What do members of parliament in India think of robots? Validation of the Frankenstein syndrome questionnaire and comparison with other population groups. Int. J. Soc. Robot. 14(9), 2009–2018 (2022). https://doi.org/10.1007/s12369-022-00921-x Bharatharaj, J., Sasthan Kutty, S.K., Munisamy, A., Krägeloh, C.U.: What do members of parliament in India think of robots? Validation of the Frankenstein syndrome questionnaire and comparison with other population groups. Int. J. Soc. Robot. 14(9), 2009–2018 (2022). https://​doi.​org/​10.​1007/​s12369-022-00921-x
Metadaten
Titel
Evaluating Machine Learning Algorithms for New Indian Parliament Building Sentiment Analysis
verfasst von
Jatinderkumar R. Saini
Shraddha Vaidya
Shailesh Kasande
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_48