Skip to main content

2024 | OriginalPaper | Buchkapitel

Evaluating Machine Learning Approaches for Forecasting Creditworthiness of Industrial Companies in Low-Default Portfolios

verfasst von : Vlada Shenevskaia, Sergey Grishunin, Alyona Astakhova

Erschienen in: Eurasian Business and Economics Perspectives

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The study focuses on estimating the creditworthiness of industrial enterprises in the Eurozone and North America, using a sample of 122 companies from 2008 to 2022. The data framework consists of annual financial, macroeconomic, and ESG risk factors. The paper’s principal contribution lies in a comparative examination of advanced modelling approaches for assessing the credit quality of corporate low-default portfolios. As a LightGBM classifier reveals superior prediction quality, an original assumption that a combined model has a stronger discriminating power is debunked. Since credit rating models have comparable variance, their combination, even when supplemented with the probability of default model’s estimates, fails to correct for the observed bias, producing less accurate results than standalone machine learning algorithms. Furthermore, a complex ensemble of models appears to be impenetrable and unstable over time, whereas artificial intelligence models, such as random forest and gradient boosting classifiers augmented with the SHAP framework, are appropriate for capital calculations. Ultimately, the constructed models could be used by financial institutions and investors to evaluate the financial standing of low-default portfolios comprised of industrial firms from advanced economies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Moody’s Investors Service (2021a, b, c, d).
 
Literatur
Zurück zum Zitat Bonsall, S., Green, J., & Muller, K. A. (2018). Are credit ratings more rigorous for widely covered firms?. He. Accounting Review, 93(6), 61–94.CrossRef Bonsall, S., Green, J., & Muller, K. A. (2018). Are credit ratings more rigorous for widely covered firms?. He. Accounting Review, 93(6), 61–94.CrossRef
Zurück zum Zitat Bryzgalova, S., Lerner, S., Lettau, M. & Pelger. (2022). Missing financial data, SSRN Electronic Journal. Bryzgalova, S., Lerner, S., Lettau, M. & Pelger. (2022). Missing financial data, SSRN Electronic Journal.
Zurück zum Zitat Cai, X., Chan, R., Xie, X., & Zeng, T. (2019). A two-stage classification method for high-dimensional data and point clouds. ArXiv. Cai, X., Chan, R., Xie, X., & Zeng, T. (2019). A two-stage classification method for high-dimensional data and point clouds. ArXiv.
Zurück zum Zitat Demeshev, B., & Tikhonova, A. (2014). Default prediction for Russian companies: Intersectoral comparison. Economic Journal of Higher School of Economics, 18(3), 359–386. Demeshev, B., & Tikhonova, A. (2014). Default prediction for Russian companies: Intersectoral comparison. Economic Journal of Higher School of Economics, 18(3), 359–386.
Zurück zum Zitat Dimitrov, V., Palia, D., & Tang, L. (2014). Impact of the Dodd-frank act on credit ratings. Journal of Financial Economics, 115. Dimitrov, V., Palia, D., & Tang, L. (2014). Impact of the Dodd-frank act on credit ratings. Journal of Financial Economics, 115.
Zurück zum Zitat Durdu, C. B., & Zhong, M. (2023). Understanding bank and nonbank credit cycles: A structural exploration. Journal of Money, Credit and Banking, 55(1), 103–142.CrossRef Durdu, C. B., & Zhong, M. (2023). Understanding bank and nonbank credit cycles: A structural exploration. Journal of Money, Credit and Banking, 55(1), 103–142.CrossRef
Zurück zum Zitat Dyatchkova, N., Grishunin, S., & Karminsky, A. (2018). Credit ratings patterns for BRICS industrial companies. Procedia Computer Science, 139, 17–24.CrossRef Dyatchkova, N., Grishunin, S., & Karminsky, A. (2018). Credit ratings patterns for BRICS industrial companies. Procedia Computer Science, 139, 17–24.CrossRef
Zurück zum Zitat Erlenmaier, U. (2006). The shadow rating approach — Experience from banking practice. In B. Engelmann & R. Rauhmeier (Eds.), The Basel II risk parameters: Estimation, validation, and stress testing (pp. 39–77). Springer.CrossRef Erlenmaier, U. (2006). The shadow rating approach — Experience from banking practice. In B. Engelmann & R. Rauhmeier (Eds.), The Basel II risk parameters: Estimation, validation, and stress testing (pp. 39–77). Springer.CrossRef
Zurück zum Zitat Fracassi, C., Petry, S., & Tate, G. A. (2013). Are credit ratings subjective? The role of credit analysts in determining ratings. SSRN Electronic Journal. Fracassi, C., Petry, S., & Tate, G. A. (2013). Are credit ratings subjective? The role of credit analysts in determining ratings. SSRN Electronic Journal.
Zurück zum Zitat Goel, A., & Thakor, A. (2011). Credit ratings and litigation risk. SSRN Electronic Journal. Goel, A., & Thakor, A. (2011). Credit ratings and litigation risk. SSRN Electronic Journal.
Zurück zum Zitat Golbayani, P., Florescu, I., & Chatterjee, R. (2020). A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees. The North American Journal of Economics and Finance, 54, 101251.CrossRef Golbayani, P., Florescu, I., & Chatterjee, R. (2020). A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees. The North American Journal of Economics and Finance, 54, 101251.CrossRef
Zurück zum Zitat Grishunin, S., Suloeva, S., Egorova, A., & Burova, E. (2020). Comparison of empirical methods for the reproduction of global manufacturing companies’ credit ratings. International Journal of Technology, 11(6), 1223.CrossRef Grishunin, S., Suloeva, S., Egorova, A., & Burova, E. (2020). Comparison of empirical methods for the reproduction of global manufacturing companies’ credit ratings. International Journal of Technology, 11(6), 1223.CrossRef
Zurück zum Zitat Hájek, P., & Olej, V. (2014). Predicting firms’ credit ratings using ensembles of artificial immune systems and machine learning—An over-sampling approach. IFIP Advances in Information and Communication Technology, 436, 29–38. Hájek, P., & Olej, V. (2014). Predicting firms’ credit ratings using ensembles of artificial immune systems and machine learning—An over-sampling approach. IFIP Advances in Information and Communication Technology, 436, 29–38.
Zurück zum Zitat He, H., & Garcia, E. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.CrossRef He, H., & Garcia, E. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.CrossRef
Zurück zum Zitat Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. Decision Support Systems, 37(4), 543–558.CrossRef Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. Decision Support Systems, 37(4), 543–558.CrossRef
Zurück zum Zitat Karminsky, A. (2015). Credit ratings and their modeling. HSE Publishing House. Karminsky, A. (2015). Credit ratings and their modeling. HSE Publishing House.
Zurück zum Zitat Karminsky, A., & Kostrov, A. (2017). The back side of banking in Russia: Forecasting bank failures with negative capital. International Journal of Computational Economics and Econometrics, 7, 170.CrossRef Karminsky, A., & Kostrov, A. (2017). The back side of banking in Russia: Forecasting bank failures with negative capital. International Journal of Computational Economics and Econometrics, 7, 170.CrossRef
Zurück zum Zitat Karminsky, A., Polozov, A. (2016). Handbook of Ratings: Approaches to ratings in the economy, sports, and society. Springer International Publishing Karminsky, A., Polozov, A. (2016). Handbook of Ratings: Approaches to ratings in the economy, sports, and society. Springer International Publishing
Zurück zum Zitat Melsom, B., Bakke Vennerod, C., De Lange, P. E., Hjelkrem, L. O., & Westgaard, S. (2022). Explainable artificial intelligence for credit scoring in banking. Journal of Risk, 23, 45–51. Melsom, B., Bakke Vennerod, C., De Lange, P. E., Hjelkrem, L. O., & Westgaard, S. (2022). Explainable artificial intelligence for credit scoring in banking. Journal of Risk, 23, 45–51.
Zurück zum Zitat Milgram, J., Cheriet, M. (2004). Two-stage classification system combining model-based and discriminative approaches. ICPR (1), 152 – 155. Milgram, J., Cheriet, M. (2004). Two-stage classification system combining model-based and discriminative approaches. ICPR (1), 152 – 155.
Zurück zum Zitat Penikas, H. (2020). Low default portfolios in Basel II and Basel III as a special case of significantly unbalanced classes in binary choice models. Russian Journal of Money and Finance, 79(2), 101–128.CrossRef Penikas, H. (2020). Low default portfolios in Basel II and Basel III as a special case of significantly unbalanced classes in binary choice models. Russian Journal of Money and Finance, 79(2), 101–128.CrossRef
Zurück zum Zitat Penikas, H., (2022). Model Risk for Acceptable, but Imperfect, Discrimination and Calibration in Basel PD and LGD Models, Bank of Russia Working Paper Series 92, 1-16 Penikas, H., (2022). Model Risk for Acceptable, but Imperfect, Discrimination and Calibration in Basel PD and LGD Models, Bank of Russia Working Paper Series 92, 1-16
Zurück zum Zitat Siddiqi, N. (2006). Credit risk scorecards: Developing and implementing intelligent credit scoring. Wiley. Siddiqi, N. (2006). Credit risk scorecards: Developing and implementing intelligent credit scoring. Wiley.
Zurück zum Zitat Timmermann, A. (2006). Forecast combinations. Handbook of economic forecasting. Elsevier. Timmermann, A. (2006). Forecast combinations. Handbook of economic forecasting. Elsevier.
Zurück zum Zitat Wu, H.-C., Hu, Y.-H., & Huang, Y.-H. (2014). Two-stage credit rating prediction using machine learning techniques. Kybernetes, 43, 1098–1113.CrossRef Wu, H.-C., Hu, Y.-H., & Huang, Y.-H. (2014). Two-stage credit rating prediction using machine learning techniques. Kybernetes, 43, 1098–1113.CrossRef
Zurück zum Zitat Yu, B., Li, C., Mirza, N., & Umar, M. (2022). Forecasting credit ratings of decarbonized firms: Comparative assessment of machine learning models. Technological Forecasting and Social Change, 174, 121255.CrossRef Yu, B., Li, C., Mirza, N., & Umar, M. (2022). Forecasting credit ratings of decarbonized firms: Comparative assessment of machine learning models. Technological Forecasting and Social Change, 174, 121255.CrossRef
Metadaten
Titel
Evaluating Machine Learning Approaches for Forecasting Creditworthiness of Industrial Companies in Low-Default Portfolios
verfasst von
Vlada Shenevskaia
Sergey Grishunin
Alyona Astakhova
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-69237-6_12

Premium Partner