Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: The VLDB Journal 5/2019

10.07.2019 | Regular Paper

Evaluating pattern matching queries for spatial databases

verfasst von: Yixiang Fang, Yun Li, Reynold Cheng, Nikos Mamoulis, Gao Cong

Erschienen in: The VLDB Journal | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

In this paper, we study the spatial pattern matching (SPM) query. Given a set D of spatial objects (e.g., houses and shops), each with a textual description, we aim at finding all combinations of objects from D that match a user-defined spatial patternP. A pattern P is a graph whose vertices represent spatial objects, and edges denote distance relationships between them. The SPM query returns the instances that satisfy P. An example of P can be “a house within 10-min walk from a school, which is at least 2 km away from a hospital.” The SPM query can benefit users such as house buyers, urban planners, and archeologists. We prove that answering such queries is computationally intractable and propose two efficient algorithms for their evaluation. Moreover, we study efficient solutions to address two related problems of the SPM: (1) find top-k matches that are close to a query location and (2) return partial matches for a query pattern. Experiments and case studies on real datasets show that our proposed solutions are highly effective and efficient.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Fußnoten
1
The user can input the lower/upper bounds of the intervals based on his experience and expertise. Alternatively, the system can be designed to give suggestions, based on, for instance, the previous users’ inputs or query results.
 
2
In context without ambiguity, we simply call it a pattern.
 
3
To avoid ambiguity, we use “node” to mean “IR-tree node,” and “vertex” to mean “vertex” of the spatial pattern in this paper.
 
Literatur
1.
Zurück zum Zitat Zhang, D., et al.: Keyword search in spatial databases: towards searching by document. In: ICDE, pp. 688–699. IEEE (2009) Zhang, D., et al.: Keyword search in spatial databases: towards searching by document. In: ICDE, pp. 688–699. IEEE (2009)
2.
Zurück zum Zitat Guo, T., Cao, X., Cong, G.: Efficient algorithms for answering the m-closest keywords query. In: SIGMOD, pp. 405–418. ACM (2015) Guo, T., Cao, X., Cong, G.: Efficient algorithms for answering the m-closest keywords query. In: SIGMOD, pp. 405–418. ACM (2015)
3.
Zurück zum Zitat Deng, K., Li, X., Lu, J., Zhou, X.: Best keyword cover search. TKDE 27(1), 61–73 (2015) Deng, K., Li, X., Lu, J., Zhou, X.: Best keyword cover search. TKDE 27(1), 61–73 (2015)
4.
Zurück zum Zitat Choi, D., Pei, J., Lin, X.: Finding the minimum spatial keyword cover. In: ICDE, pp. 685–696. IEEE (2016) Choi, D., Pei, J., Lin, X.: Finding the minimum spatial keyword cover. In: ICDE, pp. 685–696. IEEE (2016)
5.
Zurück zum Zitat Niemelä, J.: Ecology and urban planning. Biodivers. Conserv. 8(1), 119–131 (1999) CrossRef Niemelä, J.: Ecology and urban planning. Biodivers. Conserv. 8(1), 119–131 (1999) CrossRef
6.
Zurück zum Zitat Schnaiberg, J., Riera, J., Turner, M.G., Voss, P.R.: Explaining human settlement patterns in a recreational lake district: Vilas county, Wisconsin, USA. Environ. Manag. 30(1), 24–34 (2002) CrossRef Schnaiberg, J., Riera, J., Turner, M.G., Voss, P.R.: Explaining human settlement patterns in a recreational lake district: Vilas county, Wisconsin, USA. Environ. Manag. 30(1), 24–34 (2002) CrossRef
9.
Zurück zum Zitat Papadias, D., et al.: Algorithms for querying by spatial structure. In: VLDB, pp. 546–557 (1998) Papadias, D., et al.: Algorithms for querying by spatial structure. In: VLDB, pp. 546–557 (1998)
10.
Zurück zum Zitat Mamoulis, N., Papadias, D.: Multiway spatial joins. TODS 26(4), 424–475 (2001) CrossRef Mamoulis, N., Papadias, D.: Multiway spatial joins. TODS 26(4), 424–475 (2001) CrossRef
11.
Zurück zum Zitat Zou, L., Chen, L., Özsu, M.T.: Distance-join: pattern match query in a large graph database. PVLDB 2(1), 886–897 (2009) Zou, L., Chen, L., Özsu, M.T.: Distance-join: pattern match query in a large graph database. PVLDB 2(1), 886–897 (2009)
12.
Zurück zum Zitat Carletti, V., et al.: Challenging the time complexity of exact subgraph isomorphism for huge and dense graphs with VF3. In: TPAMI (2017) Carletti, V., et al.: Challenging the time complexity of exact subgraph isomorphism for huge and dense graphs with VF3. In: TPAMI (2017)
13.
Zurück zum Zitat Wu, Y., Patel, J.M., Jagadish, H.: Structural join order selection for XML query optimization. In: ICDE, pp. 443–454. IEEE (2003) Wu, Y., Patel, J.M., Jagadish, H.: Structural join order selection for XML query optimization. In: ICDE, pp. 443–454. IEEE (2003)
14.
Zurück zum Zitat Fang, Y., Cheng, R., Wang, J., Budiman, Cong, G., Mamoulis, N.: SpaceKey: exploring patterns in spatial databases. In: ICDE, pp. 1577–1580. IEEE (2018) Fang, Y., Cheng, R., Wang, J., Budiman, Cong, G., Mamoulis, N.: SpaceKey: exploring patterns in spatial databases. In: ICDE, pp. 1577–1580. IEEE (2018)
15.
Zurück zum Zitat Fang, Y., Cheng, R., Cong, G., Mamoulis, N., Li, Y.: On spatial pattern matching. In: ICDE, pp. 293–304. IEEE (2018) Fang, Y., Cheng, R., Cong, G., Mamoulis, N., Li, Y.: On spatial pattern matching. In: ICDE, pp. 293–304. IEEE (2018)
16.
Zurück zum Zitat Li, Y., Fang, Y., Cheng, R., Zhang, W.: Spatial pattern matching: a new direction for finding spatial objects. SIGSPATIAL Spec 11(1), 3–12 (2019) CrossRef Li, Y., Fang, Y., Cheng, R., Zhang, W.: Spatial pattern matching: a new direction for finding spatial objects. SIGSPATIAL Spec 11(1), 3–12 (2019) CrossRef
18.
Zurück zum Zitat Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation. In: PVLDB, pp. 217–228 (2013) Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation. In: PVLDB, pp. 217–228 (2013)
19.
Zurück zum Zitat Wu, D., Yiu, M.L., Cong, G., Jensen, C.S.: Joint top-k spatial keyword query processing. TKDE 24(10), 1889–1903 (2012) CrossRef Wu, D., Yiu, M.L., Cong, G., Jensen, C.S.: Joint top-k spatial keyword query processing. TKDE 24(10), 1889–1903 (2012) CrossRef
20.
Zurück zum Zitat Papadias, D., Mamoulis, N., Theodoridis, Y.: Processing and optimization of multiway spatial joins using r-trees. In: PODS (1999) Papadias, D., Mamoulis, N., Theodoridis, Y.: Processing and optimization of multiway spatial joins using r-trees. In: PODS (1999)
21.
Zurück zum Zitat Jin, J., An, N., Sivasubramaniam, A.: Analyzing range queries on spatial data. In: ICDE, pp. 525–534 (2000) Jin, J., An, N., Sivasubramaniam, A.: Analyzing range queries on spatial data. In: ICDE, pp. 525–534 (2000)
22.
Zurück zum Zitat Chen, F., Wu, X.: Perfect pipelining for streaming large file in peer-to-peer networks. In: Theoretical Computer Science, pp. 27–38 (2014) Chen, F., Wu, X.: Perfect pipelining for streaming large file in peer-to-peer networks. In: Theoretical Computer Science, pp. 27–38 (2014)
26.
Zurück zum Zitat Zhang, S., Yang, J., Jin, W.: Sapper: subgraph indexing and approximate matching in large graphs. PVLDB 3(1–2), 1185–1194 (2010) Zhang, S., Yang, J., Jin, W.: Sapper: subgraph indexing and approximate matching in large graphs. PVLDB 3(1–2), 1185–1194 (2010)
27.
Zurück zum Zitat Zhu, G., et al.: Treespan: efficiently computing similarity all-matching. In: SIGMOD, pp. 529–540. ACM (2012) Zhu, G., et al.: Treespan: efficiently computing similarity all-matching. In: SIGMOD, pp. 529–540. ACM (2012)
28.
Zurück zum Zitat Thomas, L.T., Valluri, S.R., Karlapalem, K.: Margin: maximal frequent subgraph mining. TKDD 4(3), 10 (2010) CrossRef Thomas, L.T., Valluri, S.R., Karlapalem, K.: Margin: maximal frequent subgraph mining. TKDD 4(3), 10 (2010) CrossRef
30.
Zurück zum Zitat Fang, Y., Cheng, R., Li, X., Luo, S., Hu, J.: Effective community search over large spatial graphs. PVLDB 10(6), 709–720 (2017) Fang, Y., Cheng, R., Li, X., Luo, S., Hu, J.: Effective community search over large spatial graphs. PVLDB 10(6), 709–720 (2017)
31.
Zurück zum Zitat Fang, Y., Cheng, R., Tang, W., Maniu, S., Yang, X.: Scalable algorithms for nearest-neighbor joins on big trajectory data. TKDE 28(3), 785–800 (2016) Fang, Y., Cheng, R., Tang, W., Maniu, S., Yang, X.: Scalable algorithms for nearest-neighbor joins on big trajectory data. TKDE 28(3), 785–800 (2016)
32.
Zurück zum Zitat Fang, Y., Wang, Z., Cheng, R., Li, X., Luo, S., Hu, J., Chen, X.: On spatial-aware community search. TKDE 31(4), 783–798 (2019) Fang, Y., Wang, Z., Cheng, R., Li, X., Luo, S., Hu, J., Chen, X.: On spatial-aware community search. TKDE 31(4), 783–798 (2019)
33.
Zurück zum Zitat Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. VLDB 2(1), 337–348 (2009) Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. VLDB 2(1), 337–348 (2009)
34.
Zurück zum Zitat Zhang, C., Zhang, Y., Zhang, W., Lin, X.: Inverted linear quadtree: efficient top-k spatial keyword search. TKDE 28(7), 1706–1721 (2016) Zhang, C., Zhang, Y., Zhang, W., Lin, X.: Inverted linear quadtree: efficient top-k spatial keyword search. TKDE 28(7), 1706–1721 (2016)
35.
Zurück zum Zitat Huang, W., Li, G., Tan, K.-L., Feng, J.: Efficient safe-region construction for moving top-k spatial keyword queries. In: CIKM, pp. 932–941. ACM (2012) Huang, W., Li, G., Tan, K.-L., Feng, J.: Efficient safe-region construction for moving top-k spatial keyword queries. In: CIKM, pp. 932–941. ACM (2012)
36.
Zurück zum Zitat Zhang, C., Zhang, Y., Zhang, W., Lin, X., Cheema, M.A., Wang, X.: Diversified spatial keyword search on road networks. In: EDBT, pp. 367–378 (2014) Zhang, C., Zhang, Y., Zhang, W., Lin, X., Cheema, M.A., Wang, X.: Diversified spatial keyword search on road networks. In: EDBT, pp. 367–378 (2014)
37.
Zurück zum Zitat Mahmood, A.R., Aref, W.G., Aly, A.M., Tang, M.: Atlas: on the expression of spatial-keyword group queries using extended relational constructs. In: SIGSPATIAL, p. 45. ACM (2016) Mahmood, A.R., Aref, W.G., Aly, A.M., Tang, M.: Atlas: on the expression of spatial-keyword group queries using extended relational constructs. In: SIGSPATIAL, p. 45. ACM (2016)
38.
Zurück zum Zitat Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: SIGMOD, pp. 373–384. ACM (2011) Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: SIGMOD, pp. 373–384. ACM (2011)
39.
Zurück zum Zitat Liu, J., Deng, K., Sun, H., Ge, Y., Zhou, X., Jensen, C.S.: Clue-based spatio-textual query. PVLDB 10(5), 529–540 (2017) Liu, J., Deng, K., Sun, H., Ge, Y., Zhou, X., Jensen, C.S.: Clue-based spatio-textual query. PVLDB 10(5), 529–540 (2017)
40.
Zurück zum Zitat Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of spatial joins using r-trees. In: SIGMOD, pp 237–246 (1993) Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of spatial joins using r-trees. In: SIGMOD, pp 237–246 (1993)
41.
Zurück zum Zitat Mamoulis, N., Papadias, D.: Integration of spatial join algorithms for processing multiple inputs. SIGMOD 28(2), 1–12 (1999) CrossRef Mamoulis, N., Papadias, D.: Integration of spatial join algorithms for processing multiple inputs. SIGMOD 28(2), 1–12 (1999) CrossRef
42.
Zurück zum Zitat Gallagher, B.: Matching structure and semantics: a survey on graph-based pattern matching. AAAI FS 6, 45–53 (2006) Gallagher, B.: Matching structure and semantics: a survey on graph-based pattern matching. AAAI FS 6, 45–53 (2006)
43.
Zurück zum Zitat Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast best-effort pattern matching in large attributed graphs. In: KDD, pp. 737–746 (2007) Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast best-effort pattern matching in large attributed graphs. In: KDD, pp. 737–746 (2007)
44.
Zurück zum Zitat Tang, M., et al.: Similarity group-by operators for multi-dimensional relational data. TKDE 28(2), 510–523 (2016) Tang, M., et al.: Similarity group-by operators for multi-dimensional relational data. TKDE 28(2), 510–523 (2016)
45.
Zurück zum Zitat Mongiovi, M., et al.: Sigma: a set-cover-based inexact graph matching algorithm. J. Bioinform. Comput. Biol. 8(02), 199–218 (2010) CrossRef Mongiovi, M., et al.: Sigma: a set-cover-based inexact graph matching algorithm. J. Bioinform. Comput. Biol. 8(02), 199–218 (2010) CrossRef
46.
Zurück zum Zitat Tian, Y., et al.: Tale: a tool for approximate large graph matching. In: ICDE, pp. 963–972. IEEE (2008) Tian, Y., et al.: Tale: a tool for approximate large graph matching. In: ICDE, pp. 963–972. IEEE (2008)
Metadaten
Titel
Evaluating pattern matching queries for spatial databases
verfasst von
Yixiang Fang
Yun Li
Reynold Cheng
Nikos Mamoulis
Gao Cong
Publikationsdatum
10.07.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
The VLDB Journal / Ausgabe 5/2019
Print ISSN: 1066-8888
Elektronische ISSN: 0949-877X
DOI
https://doi.org/10.1007/s00778-019-00550-3

Weitere Artikel der Ausgabe 5/2019

The VLDB Journal 5/2019 Zur Ausgabe

Premium Partner