Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.05.2019 | Ausgabe 6/2019

Transportation 6/2019

Evaluating the impact of spatio-temporal demand forecast aggregation on the operational performance of shared autonomous mobility fleets

Zeitschrift:
Transportation > Ausgabe 6/2019
Autoren:
Florian Dandl, Michael Hyland, Klaus Bogenberger, Hani S. Mahmassani
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Fleet operators rely on forecasts of future user requests to reposition empty vehicles and efficiently operate their vehicle fleets. In the context of an on-demand shared-use autonomous vehicle (AV) mobility service (SAMS), this study analyzes the trade-off that arises when selecting a spatio-temporal demand forecast aggregation level to support the operation of a SAMS fleet. In general, when short-term forecasts of user requests are intended for a finer space–time discretization, they tend to become less reliable. However, holding reliability constant, more disaggregate forecasts provide more valuable information to fleet operators. To explore this trade-off, this study presents a flexible methodological framework to evaluate and quantify the impact of spatio-temporal demand forecast aggregation on the operational efficiency of a SAMS fleet. At the core of the methodological framework is an agent-based simulation that requires a demand forecasting method and a SAMS fleet operational strategy. This study employs an offline demand forecasting method, and an online joint AV-user assignment and empty AV repositioning strategy. Using this forecasting method and fleet operational strategy, as well as Manhattan, NY taxi data, this study simulates the operations of a SAMS fleet across various spatio-temporal aggregation levels. Results indicate that as demand forecasts (and subregions) become more spatially disaggregate, fleet performance improves, in terms of user wait time and empty fleet miles. This finding comes despite demand forecast quality decreasing as subregions become more spatially disaggregate. Additionally, results indicate the SAMS fleet significantly benefits from higher quality demand forecasts, especially at more disaggregate levels.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2019

Transportation 6/2019 Zur Ausgabe

Premium Partner

    Bildnachweise