Skip to main content

2023 | OriginalPaper | Buchkapitel

Evaluation of Different Environmental Covariates Performance for Modeling Soil Salinity Using Digital Soil Mapping in a Susceptible Irrigated Rural Area

verfasst von : Judit Rodríguez-Fernández, Montserrat Ferrer-Juliá, Sara Alcalde-Aparicio

Erschienen in: Global Challenges for a Sustainable Society

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Soil is an indispensable resource for the development of the ecosystems, also working as a support for the human activities, being essential for the agricultural productivity. There are many soil degradation risks that cause a quality deterioration. One of the major risks is soil salinity, caused by the accumulation of salts both naturally and anthropically. For this reason, prevention measures are needed. To this end, soil properties inference and modelling result essential. Thus, the main objective of this research is to find the most useful environmental covariates for modeling soil salinity through the application of the Digital Soil Mapping (DSM) methodology in an irrigated rural area in Castile and León (Spain). For this purpose, 132 soil samples from two different laboratories were used, which contained electrical conductivity measured in saturated paste (ECx). In addition, several environmental covariates related to soil salinity were employed to perform a statistical analysis through the combination of multiple linear regression (MLR) and generalized linear models (GLM). Afterwards, the best prediction model and its explanatory covariates were selected. The MLR showed R2 values between 0.382 and 0.581 for the laboratories analyzed. In turn, all the models almost had the same main covariates, which were associated to remote sensing indices and topographic variables. Finally, it was concluded that the method is useful to determine the most important variables for modeling soil salinity, allowing more accurate predictions, identifying which susceptible areas need preventive measures and helping to achieve those SDGs targets that involve soil’s conservation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat McBratney, A.B., Santos, M.M., Minasny, B.: On digital soil mapping. Geoderma 117(1–2), 3–52 (2003)CrossRef McBratney, A.B., Santos, M.M., Minasny, B.: On digital soil mapping. Geoderma 117(1–2), 3–52 (2003)CrossRef
3.
Zurück zum Zitat Minasny, B., McBratney, A.B.: Digital soil mapping: a brief history and some lessons. Geoderma 264, 301–311 (2016)CrossRef Minasny, B., McBratney, A.B.: Digital soil mapping: a brief history and some lessons. Geoderma 264, 301–311 (2016)CrossRef
4.
Zurück zum Zitat Mousavi, S.Z., Habibnejad, M., Kavian, A., Solaimani, K., Khormali, F.: Digital mapping of topsoil salinity using remote sensing indices in Agh-Ghala Plain, Iran. Ecopersia 5(2), 1771–1786 (2017) Mousavi, S.Z., Habibnejad, M., Kavian, A., Solaimani, K., Khormali, F.: Digital mapping of topsoil salinity using remote sensing indices in Agh-Ghala Plain, Iran. Ecopersia 5(2), 1771–1786 (2017)
5.
Zurück zum Zitat Zare, S., Abtahi, A., Shamsi, S.R.F., Lagacherie, P.: Combining laboratory measurements and proximal soil sensing data in digital soil mapping approaches. CATENA 207, 105702 (2021)CrossRef Zare, S., Abtahi, A., Shamsi, S.R.F., Lagacherie, P.: Combining laboratory measurements and proximal soil sensing data in digital soil mapping approaches. CATENA 207, 105702 (2021)CrossRef
6.
Zurück zum Zitat de León Llamazares, A., Arriba Balenciaga, A., De La Plaza, M.C.: Caracterización agroclimática de la provincia de Zamora. Ministerio de Agricultura, Pesca y Alimentación, Madrid (1987) de León Llamazares, A., Arriba Balenciaga, A., De La Plaza, M.C.: Caracterización agroclimática de la provincia de Zamora. Ministerio de Agricultura, Pesca y Alimentación, Madrid (1987)
7.
Zurück zum Zitat de León Llamazares, A., Arriba Balenciaga, A., De La Plaza, M.C.: Caracterización agroclimática de la provincia de León. Ministerio de Agricultura, Pesca y Alimentación, Madrid (1991) de León Llamazares, A., Arriba Balenciaga, A., De La Plaza, M.C.: Caracterización agroclimática de la provincia de León. Ministerio de Agricultura, Pesca y Alimentación, Madrid (1991)
15.
Zurück zum Zitat Triantafilis, J., Lesch, S.M., La Lau, K., Buchanan, S.M.: Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model. Soil Res. 47(7), 651–663 (2009)CrossRef Triantafilis, J., Lesch, S.M., La Lau, K., Buchanan, S.M.: Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model. Soil Res. 47(7), 651–663 (2009)CrossRef
16.
Zurück zum Zitat Omuto, C.T., Vargas, R.R., Elmobarak, A.A., Mapeshoane, B.E., Koetlisi, K.A., Ahmadzai, H., Abdalla Mohamed, N.: Digital soil assessment in support of a soil information system for monitoring salinization and sodification in agricultural areas. Land Degrad. Dev. 33(8), 1204–1218 (2022)CrossRef Omuto, C.T., Vargas, R.R., Elmobarak, A.A., Mapeshoane, B.E., Koetlisi, K.A., Ahmadzai, H., Abdalla Mohamed, N.: Digital soil assessment in support of a soil information system for monitoring salinization and sodification in agricultural areas. Land Degrad. Dev. 33(8), 1204–1218 (2022)CrossRef
17.
Zurück zum Zitat Mosleh, Z., Salehi, M.H., Jafari, A., Borujeni, I.E., Mehnatkesh, A.: The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environ. Monit. Assess. 188(3), 1–13 (2016)CrossRef Mosleh, Z., Salehi, M.H., Jafari, A., Borujeni, I.E., Mehnatkesh, A.: The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environ. Monit. Assess. 188(3), 1–13 (2016)CrossRef
18.
Zurück zum Zitat Taghizadeh-Mehrjardi, R., Hamzehpour, N., Hassanzadeh, M., Heung, B., Goydaragh, M.G., Schmidt, K., Scholten, T.: Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping. Geoderma 399, 115108 (2021)CrossRef Taghizadeh-Mehrjardi, R., Hamzehpour, N., Hassanzadeh, M., Heung, B., Goydaragh, M.G., Schmidt, K., Scholten, T.: Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping. Geoderma 399, 115108 (2021)CrossRef
19.
Zurück zum Zitat Nabiollahi, K., Taghizadeh-Mehrjardi, R., Shahabi, A., Heung, B., Amirian-Chakan, A., Davari, M., Scholten, T.: Assessing agricultural salt-affected land using digital soil mapping and hybridized random forests. Geoderma 385, 114858 (2021)CrossRef Nabiollahi, K., Taghizadeh-Mehrjardi, R., Shahabi, A., Heung, B., Amirian-Chakan, A., Davari, M., Scholten, T.: Assessing agricultural salt-affected land using digital soil mapping and hybridized random forests. Geoderma 385, 114858 (2021)CrossRef
Metadaten
Titel
Evaluation of Different Environmental Covariates Performance for Modeling Soil Salinity Using Digital Soil Mapping in a Susceptible Irrigated Rural Area
verfasst von
Judit Rodríguez-Fernández
Montserrat Ferrer-Juliá
Sara Alcalde-Aparicio
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-25840-4_64