Skip to main content
Erschienen in: Journal of Scientific Computing 2-3/2017

29.07.2017

Evaluation of Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations

verfasst von: Antony Jameson

Erschienen in: Journal of Scientific Computing | Ausgabe 2-3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents the formulation of a dual time stepping procedure to solve the equations of fully implicit Runge–Kutta schemes. In particular the method is applied to Gauss and Radau 2A schemes with either two or three stages. The schemes are tested for unsteady flows over a pitching airfoil modeled by both the Euler and the unsteady Reynolds averaged Navier Stokes equations. It is concluded that the Radau 2A schemes are more robust and less computationally expensive because they require a much smaller number of inner iterations. Moreover these schemes seem to be competitive with alternative implicit schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jameson, A.: Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings, AIAA Paper 91-1596, 10th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii (June 1991) Jameson, A.: Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings, AIAA Paper 91-1596, 10th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii (June 1991)
3.
Zurück zum Zitat Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods. Wiley-Interscience, Chichester (1987)MATH Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods. Wiley-Interscience, Chichester (1987)MATH
4.
Zurück zum Zitat Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2003)CrossRefMATH Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2003)CrossRefMATH
6.
Zurück zum Zitat Persson, P.-O., Willis, D.J., Peraire, J.: The numerical simulation of flapping wings at low Reynolds numbers. AIAA Paper 2010-724, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL (2010) Persson, P.-O., Willis, D.J., Peraire, J.: The numerical simulation of flapping wings at low Reynolds numbers. AIAA Paper 2010-724, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL (2010)
7.
Zurück zum Zitat Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A.: Implicit time integration schemes for the unsteady compressible Navier–Stokes equations: laminar flow. J. Comput. Phys. 179(1), 313–329 (2002)CrossRefMATH Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A.: Implicit time integration schemes for the unsteady compressible Navier–Stokes equations: laminar flow. J. Comput. Phys. 179(1), 313–329 (2002)CrossRefMATH
8.
Zurück zum Zitat Jothiprasad, G., Mavriplis, D.J., Caughey, D.A.: Higher-order time integration schemes for the unsteady Navier–Stokes equations on unstructured meshes. J. Comput. Phys. 191, 542–566 (2003)CrossRefMATH Jothiprasad, G., Mavriplis, D.J., Caughey, D.A.: Higher-order time integration schemes for the unsteady Navier–Stokes equations on unstructured meshes. J. Comput. Phys. 191, 542–566 (2003)CrossRefMATH
9.
Zurück zum Zitat Boom, P.D., Zingg, D.W.: High-order implicit time integration for unsteady compressible fluid flow simulation. AIAA Paper 2013-2831, 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA (2013) Boom, P.D., Zingg, D.W.: High-order implicit time integration for unsteady compressible fluid flow simulation. AIAA Paper 2013-2831, 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA (2013)
11.
Zurück zum Zitat Jameson, A.: Application of dual time stepping to fully implicit Runge Kutta Schemes for unsteady flow calculations. AIAA paper 2015-2753, 22nd AIAA Computational Fluid Dynamics Conference (2015) Jameson, A.: Application of dual time stepping to fully implicit Runge Kutta Schemes for unsteady flow calculations. AIAA paper 2015-2753, 22nd AIAA Computational Fluid Dynamics Conference (2015)
13.
Zurück zum Zitat Mulder, W.A.: A high-resolution Euler solver based on multigrid, semi-coarsening, and defect correction. J. Comput. Phys. 100, 91–104 (1992)CrossRefMATHMathSciNet Mulder, W.A.: A high-resolution Euler solver based on multigrid, semi-coarsening, and defect correction. J. Comput. Phys. 100, 91–104 (1992)CrossRefMATHMathSciNet
14.
Zurück zum Zitat Allmaras, S.: Analysis of a local matrix preconditioner for the 2-D Navier–Stokes equations. AIAA paper 93-3330, AIAA 11th Computational Fluid Dynamics Conference, Orlando, FL (July 1993) Allmaras, S.: Analysis of a local matrix preconditioner for the 2-D Navier–Stokes equations. AIAA paper 93-3330, AIAA 11th Computational Fluid Dynamics Conference, Orlando, FL (July 1993)
15.
Zurück zum Zitat Allmaras, S.: Analysis of semi-implicit preconditioners for multigrid solution of the 2-D Navier–Stokes equations. AIAA paper 95-1651, AIAA 12th Computational Fluid Dynamics Conference, San Diego, CA (June 1995) Allmaras, S.: Analysis of semi-implicit preconditioners for multigrid solution of the 2-D Navier–Stokes equations. AIAA paper 95-1651, AIAA 12th Computational Fluid Dynamics Conference, San Diego, CA (June 1995)
16.
Zurück zum Zitat Allmaras, S.: Algebraic smoothing analysis of multigrid methods for the 2-D compressible Navier–Stokes equations. AIAA Paper 97-1954, AIAA 13th Computational Fluid Dynamics Conference, Snowmass, CO (July 1997) Allmaras, S.: Algebraic smoothing analysis of multigrid methods for the 2-D compressible Navier–Stokes equations. AIAA Paper 97-1954, AIAA 13th Computational Fluid Dynamics Conference, Snowmass, CO (July 1997)
17.
Zurück zum Zitat Pierce, N.A., Giles, M.B.: Preconditioning compressible flow calculations on stretched meshes. J. Comput. Phys. 136, 425–445 (1997)CrossRefMATHMathSciNet Pierce, N.A., Giles, M.B.: Preconditioning compressible flow calculations on stretched meshes. J. Comput. Phys. 136, 425–445 (1997)CrossRefMATHMathSciNet
18.
Zurück zum Zitat Pierce, N.A., Giles, M.B., Jameson, A., Martinelli, L.: Accelerating three-dimensional Navier–Stokes calculations. AIAA Paper 97-1953, AIAA 13th Computational Fluid Dynamics Conference, Snowmass, CO (July 1997) Pierce, N.A., Giles, M.B., Jameson, A., Martinelli, L.: Accelerating three-dimensional Navier–Stokes calculations. AIAA Paper 97-1953, AIAA 13th Computational Fluid Dynamics Conference, Snowmass, CO (July 1997)
19.
20.
Zurück zum Zitat Swanson, R., Turkel, E., Rossow, C.-C.: Convergence acceleration of Runge–Kutta schemes for solving the Navier–Stokes equations. J. Comput. Phys. 224(1), 365–388 (2007)CrossRefMATHMathSciNet Swanson, R., Turkel, E., Rossow, C.-C.: Convergence acceleration of Runge–Kutta schemes for solving the Navier–Stokes equations. J. Comput. Phys. 224(1), 365–388 (2007)CrossRefMATHMathSciNet
22.
23.
Zurück zum Zitat Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. AIAA Paper 1981-1259, 14th AIAA Fluid and Plasma Dynamics Conference, Palo Alto, CA (June 1981) Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. AIAA Paper 1981-1259, 14th AIAA Fluid and Plasma Dynamics Conference, Palo Alto, CA (June 1981)
24.
Zurück zum Zitat Davis, S.S.: NACA 64A010 oscillatory pitching, compendium of unsteady aerodynamics measurements. Tech. Rep. 702, AGARD (1982) Davis, S.S.: NACA 64A010 oscillatory pitching, compendium of unsteady aerodynamics measurements. Tech. Rep. 702, AGARD (1982)
25.
Zurück zum Zitat Pazner, W., Persson, P.-O.: Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin fluid simulations. J. Comput. Phys. 335, 700–717 (2017)CrossRefMathSciNet Pazner, W., Persson, P.-O.: Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin fluid simulations. J. Comput. Phys. 335, 700–717 (2017)CrossRefMathSciNet
26.
Zurück zum Zitat Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)CrossRefMATH Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)CrossRefMATH
Metadaten
Titel
Evaluation of Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations
verfasst von
Antony Jameson
Publikationsdatum
29.07.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2-3/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0476-x

Weitere Artikel der Ausgabe 2-3/2017

Journal of Scientific Computing 2-3/2017 Zur Ausgabe