Skip to main content
Erschienen in: Neural Computing and Applications 3/2018

25.07.2016 | Original Article

Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques

verfasst von: Iman Mansouri, Aliakbar Gholampour, Ozgur Kisi, Togay Ozbakkaloglu

Erschienen in: Neural Computing and Applications | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper investigates the ability of four artificial intelligence techniques, including artificial neural network (ANN), radial basis neural network (RBNN), adaptive neuro-fuzzy inference system (ANFIS) with grid partitioning, and ANFIS with fuzzy c-means clustering, to predict the peak and residual conditions of actively confined concrete. A large experimental test database that consists of 377 axial compression test results of actively confined concrete specimens was assembled from the published literature, and it was used to train, test, and validate the four models proposed in this paper using the mentioned artificial intelligence techniques. The results show that all of the neural network and ANFIS models fit well with the experimental results, and they outperform the conventional models. Among the artificial intelligence models investigated, RBNN model is found to be the most accurate to predict the peak and residual conditions of actively confined concrete. The predictions of each proposed model are subsequently used to study the interdependence of critical parameters and their influence on the behavior of actively confined concrete.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Richart FE, Brandtzaeg A, Brown RL (1929) The failure of plain and spirally reinforced concrete in compression. Bulletin no. 190. Engineering experiment station. University of Illinois, Urbana Richart FE, Brandtzaeg A, Brown RL (1929) The failure of plain and spirally reinforced concrete in compression. Bulletin no. 190. Engineering experiment station. University of Illinois, Urbana
2.
Zurück zum Zitat Saatcioglu M, Razvi SR (1992) Strength and ductility of confined concrete. J Struct Eng ASCE 118:1590–1607CrossRef Saatcioglu M, Razvi SR (1992) Strength and ductility of confined concrete. J Struct Eng ASCE 118:1590–1607CrossRef
3.
Zurück zum Zitat Ozbakkaloglu T, Saatcioglu M (2006) Seismic behavior of high-strength concrete columns confined by fiber-reinforced polymer tubes. J Compos Constr ASCE 10:538–549CrossRef Ozbakkaloglu T, Saatcioglu M (2006) Seismic behavior of high-strength concrete columns confined by fiber-reinforced polymer tubes. J Compos Constr ASCE 10:538–549CrossRef
4.
Zurück zum Zitat Ozbakkaloglu T, Lim JC, Vincent T (2013) FRP-confined concrete in circular sections: review and assessment of stress–strain models. Eng Struct 49:1068–1088CrossRef Ozbakkaloglu T, Lim JC, Vincent T (2013) FRP-confined concrete in circular sections: review and assessment of stress–strain models. Eng Struct 49:1068–1088CrossRef
5.
Zurück zum Zitat Richart FE, Brandtzaeg A, Brown RL (1928) A study of the failure of concrete under combined compressive stresses. Bulletin no. 185. Engineering experimental station. University of Illinois, Champaign Richart FE, Brandtzaeg A, Brown RL (1928) A study of the failure of concrete under combined compressive stresses. Bulletin no. 185. Engineering experimental station. University of Illinois, Champaign
6.
Zurück zum Zitat Mills LL, Zimmerman RM (1970) Compressive strength of plain concrete under multiaxial loading conditions. ACI J Proc 67:802–807 Mills LL, Zimmerman RM (1970) Compressive strength of plain concrete under multiaxial loading conditions. ACI J Proc 67:802–807
7.
Zurück zum Zitat Mander JB, Priestley MJN, Park R (1988) Theoretical stress–strain model for confined concrete. J Struct Eng ASCE 114:1804–1826CrossRef Mander JB, Priestley MJN, Park R (1988) Theoretical stress–strain model for confined concrete. J Struct Eng ASCE 114:1804–1826CrossRef
8.
Zurück zum Zitat Xie J, Elwi AE, Macgregor JG (1995) Mechanical-properties of high-strength concretes containing silica fume. ACI Mater J 92:135–145 Xie J, Elwi AE, Macgregor JG (1995) Mechanical-properties of high-strength concretes containing silica fume. ACI Mater J 92:135–145
9.
Zurück zum Zitat Attard MM, Setunge S (1996) Stress–strain relationship of confined and unconfined concrete. ACI Mater J 93:432–442 Attard MM, Setunge S (1996) Stress–strain relationship of confined and unconfined concrete. ACI Mater J 93:432–442
10.
Zurück zum Zitat Ansari F, Li QB (1998) High-strength concrete subjected to triaxial compression. ACI Mater J 95:747–755 Ansari F, Li QB (1998) High-strength concrete subjected to triaxial compression. ACI Mater J 95:747–755
11.
Zurück zum Zitat Candappa DC, Sanjayan JG, Setunge S (2001) Complete triaxial stress–strain curves of high-strength concrete. J Mater Civ Eng 13:209–215CrossRef Candappa DC, Sanjayan JG, Setunge S (2001) Complete triaxial stress–strain curves of high-strength concrete. J Mater Civ Eng 13:209–215CrossRef
12.
Zurück zum Zitat Imran I, Pantazopoulou SJ (2001) Plasticity model for concrete under triaxial compression. J Eng Mech ASCE 127:281–290CrossRef Imran I, Pantazopoulou SJ (2001) Plasticity model for concrete under triaxial compression. J Eng Mech ASCE 127:281–290CrossRef
13.
Zurück zum Zitat Binici B (2005) An analytical model for stress–strain behavior of confined concrete. Eng Struct 27:1040–1051CrossRef Binici B (2005) An analytical model for stress–strain behavior of confined concrete. Eng Struct 27:1040–1051CrossRef
14.
Zurück zum Zitat Jiang T, Teng JG (2007) Analysis-oriented stress–strain models for FRP-confined concrete. Eng Struct 29:2968–2986CrossRef Jiang T, Teng JG (2007) Analysis-oriented stress–strain models for FRP-confined concrete. Eng Struct 29:2968–2986CrossRef
15.
Zurück zum Zitat Teng JG, Huang YL, Lam L, Ye LP (2007) Theoretical model for fiber-reinforced polymer-confined concrete. J Compos Constr ASCE 11:201–210CrossRef Teng JG, Huang YL, Lam L, Ye LP (2007) Theoretical model for fiber-reinforced polymer-confined concrete. J Compos Constr ASCE 11:201–210CrossRef
16.
Zurück zum Zitat Xiao QG, Teng JG, Yu T (2010) Behavior and modeling of confined high-strength concrete. J Compos Constr ASCE 14:249–259CrossRef Xiao QG, Teng JG, Yu T (2010) Behavior and modeling of confined high-strength concrete. J Compos Constr ASCE 14:249–259CrossRef
17.
Zurück zum Zitat Samani AK, Attard MM (2012) A stress–strain model for uniaxial and confined concrete under compression. Eng Struct 41:335–349CrossRef Samani AK, Attard MM (2012) A stress–strain model for uniaxial and confined concrete under compression. Eng Struct 41:335–349CrossRef
18.
Zurück zum Zitat Lim JC, Ozbakkaloglu T (2014) Stress–strain model for normal- and light-weight concretes under uniaxial and triaxial compression. Constr Build Mater 71:492–509CrossRef Lim JC, Ozbakkaloglu T (2014) Stress–strain model for normal- and light-weight concretes under uniaxial and triaxial compression. Constr Build Mater 71:492–509CrossRef
19.
Zurück zum Zitat Sonebi M, Cevik A (2009) Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverised fuel ash. Constr Build Mater 23:2614–2622CrossRef Sonebi M, Cevik A (2009) Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverised fuel ash. Constr Build Mater 23:2614–2622CrossRef
20.
Zurück zum Zitat Cevik A (2011) Modeling strength enhancement of FRP confined concrete cylinders using soft computing. Expert Syst Appl 38:5662–5673CrossRef Cevik A (2011) Modeling strength enhancement of FRP confined concrete cylinders using soft computing. Expert Syst Appl 38:5662–5673CrossRef
21.
Zurück zum Zitat Jalal M, Ramezanianpour AA, Pouladkhan AR, Tedro P (2013) Application of genetic programming (GP) and ANFIS for strength enhancement modeling of CFRP-retrofitted concrete cylinders. Neural Comput Appl 23:455–470CrossRef Jalal M, Ramezanianpour AA, Pouladkhan AR, Tedro P (2013) Application of genetic programming (GP) and ANFIS for strength enhancement modeling of CFRP-retrofitted concrete cylinders. Neural Comput Appl 23:455–470CrossRef
22.
Zurück zum Zitat Mashrei MA, Seracino R, Rahman MS (2013) Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints. Constr Build Mater 40:812–821CrossRef Mashrei MA, Seracino R, Rahman MS (2013) Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints. Constr Build Mater 40:812–821CrossRef
23.
Zurück zum Zitat Sadrmomtazi A, Sobhani J, Mirgozar MA (2013) Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS. Constr Build Mater 42:205–216CrossRef Sadrmomtazi A, Sobhani J, Mirgozar MA (2013) Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS. Constr Build Mater 42:205–216CrossRef
24.
Zurück zum Zitat Pham TM, Hadi MN (2014) Predicting stress and strain of frp-confined square/rectangular columns using artificial neural networks. J Compos Constr 18(6):04014019CrossRef Pham TM, Hadi MN (2014) Predicting stress and strain of frp-confined square/rectangular columns using artificial neural networks. J Compos Constr 18(6):04014019CrossRef
25.
Zurück zum Zitat Altun F, Kisi O, Aydin K (2008) Predicting the compressive strength of steel fiber added lightweight concrete using neural network. Comput Mater Sci 42:259–265CrossRef Altun F, Kisi O, Aydin K (2008) Predicting the compressive strength of steel fiber added lightweight concrete using neural network. Comput Mater Sci 42:259–265CrossRef
26.
Zurück zum Zitat Özcan F, Atiş CD, Karahan O, Uncuoğlu E, Tanyildizi H (2009) Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Adv Eng Softw 40:856–863CrossRefMATH Özcan F, Atiş CD, Karahan O, Uncuoğlu E, Tanyildizi H (2009) Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Adv Eng Softw 40:856–863CrossRefMATH
27.
Zurück zum Zitat Sobhani J, Najimi M, Pourkhorshidi AR, Parhizkar T (2010) Prediction of the compressive strength of no-slump concrete: a comparative study of regression, neural network and ANFIS models. Constr Build Mater 24:709–718CrossRef Sobhani J, Najimi M, Pourkhorshidi AR, Parhizkar T (2010) Prediction of the compressive strength of no-slump concrete: a comparative study of regression, neural network and ANFIS models. Constr Build Mater 24:709–718CrossRef
28.
Zurück zum Zitat Lim JC, Karakus M, Ozbakkaloglu T (2016) Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming. Comput Struct 162:28–37CrossRef Lim JC, Karakus M, Ozbakkaloglu T (2016) Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming. Comput Struct 162:28–37CrossRef
30.
Zurück zum Zitat Perera R, Ruiz A (2012) Design equations for reinforced concrete members strengthened in shear with external FRP reinforcement formulated in an evolutionary multi-objective framework. Compos B Eng 43(2):488–496CrossRef Perera R, Ruiz A (2012) Design equations for reinforced concrete members strengthened in shear with external FRP reinforcement formulated in an evolutionary multi-objective framework. Compos B Eng 43(2):488–496CrossRef
31.
Zurück zum Zitat Perera R, Tarazona D, Ruiz A, Martín A (2014) Application of artificial intelligence techniques to predict the performance of RC beams shear strengthened with NSM FRP rods. Formulation of design equations. Compos B Eng 66:162–173CrossRef Perera R, Tarazona D, Ruiz A, Martín A (2014) Application of artificial intelligence techniques to predict the performance of RC beams shear strengthened with NSM FRP rods. Formulation of design equations. Compos B Eng 66:162–173CrossRef
32.
Zurück zum Zitat Kisi O (2005) Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol Sci J 50:683–696 Kisi O (2005) Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol Sci J 50:683–696
33.
Zurück zum Zitat Haykin SS (2009) Neural networks and learning machines, 3rd edn. Prentice Hall, Upper Saddle River Haykin SS (2009) Neural networks and learning machines, 3rd edn. Prentice Hall, Upper Saddle River
34.
Zurück zum Zitat Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355MathSciNetMATH Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355MathSciNetMATH
35.
Zurück zum Zitat Poggio T, Girosi F (1990) Regularization algorithms for learning that are equivalent to multilayer networks. Science 2247:978–982MathSciNetCrossRefMATH Poggio T, Girosi F (1990) Regularization algorithms for learning that are equivalent to multilayer networks. Science 2247:978–982MathSciNetCrossRefMATH
36.
Zurück zum Zitat Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2:569–576CrossRef Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2:569–576CrossRef
37.
Zurück zum Zitat Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685CrossRef Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685CrossRef
38.
Zurück zum Zitat Jang JSR, Sun CT (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, Upper Saddle River Jang JSR, Sun CT (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, Upper Saddle River
39.
Zurück zum Zitat Mamdani EH (1974) Application of fuzzy algorithms for control of simple dynamic plant. Proc Inst Electr Electron Eng 121:1585–1588CrossRef Mamdani EH (1974) Application of fuzzy algorithms for control of simple dynamic plant. Proc Inst Electr Electron Eng 121:1585–1588CrossRef
40.
Zurück zum Zitat Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern 15:116–132CrossRefMATH Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern 15:116–132CrossRefMATH
41.
Zurück zum Zitat Chen D, Gao C (2012) Soft computing methods applied to train station parking in urban rail transit. Appl Soft Comput 12:759–767CrossRef Chen D, Gao C (2012) Soft computing methods applied to train station parking in urban rail transit. Appl Soft Comput 12:759–767CrossRef
42.
Zurück zum Zitat Ayvaza MT, Karahana H, Aral MM (2007) Aquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic algorithm. J Hydrol 343:240–253CrossRef Ayvaza MT, Karahana H, Aral MM (2007) Aquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic algorithm. J Hydrol 343:240–253CrossRef
43.
Zurück zum Zitat Lim JC, Ozbakkaloglu T (2014) Lateral strain-to-axial strain relationship of confined concrete. J Struct Eng ASCE 141(5):04014141CrossRef Lim JC, Ozbakkaloglu T (2014) Lateral strain-to-axial strain relationship of confined concrete. J Struct Eng ASCE 141(5):04014141CrossRef
44.
Zurück zum Zitat Lim JC, Ozbakkaloglu T (2015) Investigation of the influence of application path of confining pressure: tests on actively confined and FRP-confined concretes. J Struct Eng ASCE 141(8):04014203CrossRef Lim JC, Ozbakkaloglu T (2015) Investigation of the influence of application path of confining pressure: tests on actively confined and FRP-confined concretes. J Struct Eng ASCE 141(8):04014203CrossRef
45.
Zurück zum Zitat Tamuzs V, Tepfers R, You CS, Rousakis T, Repelis I, Skruls V, Vilks U (2006) Behavior of concrete cylinders confined by carbon-composite tapes and prestressed yarns, 1. Experimental data. Mech Compos Mater 42(1):13–32CrossRef Tamuzs V, Tepfers R, You CS, Rousakis T, Repelis I, Skruls V, Vilks U (2006) Behavior of concrete cylinders confined by carbon-composite tapes and prestressed yarns, 1. Experimental data. Mech Compos Mater 42(1):13–32CrossRef
46.
Zurück zum Zitat Cinina I, Zile E, Zile O (2012) Mechanical behavior of concrete columns confined by basalt FRP windings. Mech Compos Mater 48(5):783–792CrossRef Cinina I, Zile E, Zile O (2012) Mechanical behavior of concrete columns confined by basalt FRP windings. Mech Compos Mater 48(5):783–792CrossRef
47.
Zurück zum Zitat Janke L, Czaderski C, Ruth J, Motavalli M (2009) Experiments on the residual load-bearing capacity of prestressed confined concrete columns. Eng Struct 31(10):2247–2256CrossRef Janke L, Czaderski C, Ruth J, Motavalli M (2009) Experiments on the residual load-bearing capacity of prestressed confined concrete columns. Eng Struct 31(10):2247–2256CrossRef
48.
Zurück zum Zitat Rousakis TC, Tourtouras IS (2014) RC columns of square section—passive and active confinement with composite ropes. Compos B Eng 58:573–581CrossRef Rousakis TC, Tourtouras IS (2014) RC columns of square section—passive and active confinement with composite ropes. Compos B Eng 58:573–581CrossRef
50.
Zurück zum Zitat Rousakis TC, Tourtouras IS (2015) Modeling of passive and active external confinement of RC columns with elastic material. J Appl Math Mech 95(10):1046–1057 Rousakis TC, Tourtouras IS (2015) Modeling of passive and active external confinement of RC columns with elastic material. J Appl Math Mech 95(10):1046–1057
52.
Zurück zum Zitat May RJ, Maier HR, Dandy GC (2010) Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Netw 23:283–294CrossRef May RJ, Maier HR, Dandy GC (2010) Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Netw 23:283–294CrossRef
53.
Zurück zum Zitat Cigizoglu HK (2003) Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol Sci J 48:349–361CrossRef Cigizoglu HK (2003) Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol Sci J 48:349–361CrossRef
54.
Zurück zum Zitat Ay M, Kisi O (2014) Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering technique. J Hydrol 511:279–289CrossRef Ay M, Kisi O (2014) Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering technique. J Hydrol 511:279–289CrossRef
Metadaten
Titel
Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques
verfasst von
Iman Mansouri
Aliakbar Gholampour
Ozgur Kisi
Togay Ozbakkaloglu
Publikationsdatum
25.07.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 3/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2492-4

Weitere Artikel der Ausgabe 3/2018

Neural Computing and Applications 3/2018 Zur Ausgabe