Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

21.09.2019 | Technical Paper | Ausgabe 4/2020

Microsystem Technologies 4/2020

Evaluation of porous polydimethylsiloxane/carbon nanotubes (PDMS/CNTs) nanocomposites as piezoresistive sensor materials

Zeitschrift:
Microsystem Technologies > Ausgabe 4/2020
Autoren:
Taissa R. Michel, Michael J. Capasso, Muhammet E. Cavusoglu, Jeremy Decker, Danilo Zeppilli, Cheng Zhu, Smitesh Bakrania, Jennifer A. Kadlowec, Wei Xue
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Polymer foams with porous structures have many attractive features. Integrating nanomaterials into the “passive” porous polymers can result in functional nanocomposites with unique advantages. In this project the characteristics of porous nanocomposites, made of polydimethylsiloxane (PDMS) and carbon nanotubes (CNTs), for piezoresistive pressure sensing applications were evaluated. The CNTs, at the percolation threshold of 3.5 wt%, were used to increase the conductivity of the host polymer. The open-pore samples were produced with a simple scaffolding method using common granulated sugar and hot water bath. The porosity directly affected the Young’s modulus and the density of the porous structure, with a higher porosity resulting in a softer and lighter material. Counter to the common evidence, the porous samples showed a reduction in piezoresistive sensing performance when used as pressure sensor materials. Foam morphology inspection and sensing analysis suggested that the effective deformation of the overall porous structure was mitigated by the collapsing of the open pores. The characterization of the 70%-porosity samples showed clear benefits of reduced stiffness (74.4% and 88.4% reductions in tensile and compressive Young’s moduli, respectively) and lower weight (56.9% reduction in material density), with a reduced sensitivity of 30.1% from their solid counterparts. Our investigation suggests that when a porous material is considered for sensing applications, a comprehensive evaluation of compositions-mechanical-structural-sensing behaviors is warranted. This project provides an insightful perspective on functional materials research, especially on the engineering of active polymer foams with specifically desired properties for various applications.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2020

Microsystem Technologies 4/2020 Zur Ausgabe