Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2018 | OriginalPaper | Buchkapitel

69. Evaluation of the Impact of Air-Sea Exchange on Atmospheric Mercury Concentrations

verfasst von: Johannes Bieser, Corinna Schrum

Erschienen in: Air Pollution Modeling and its Application XXV

Verlag: Springer International Publishing

share
TEILEN

Abstract

Mercury is a toxic substance that is ubiquitous in the environment. In the atmosphere mercury exists mainly in the form of gaseous elemental mercury (GEM). Deposition is dominated by oxidized mercury species although they make up for only 1% of the total mercury in the atmosphere. The situation in the aquatic environment is inverse. Here, mercury exists mainly in its oxidized state HgII. Due to photolysis and biological activity mercury in the Ocean is reduced to dissolved elemental mercury (DEM). As mercury is constantly cycling between the ocean and the atmosphere it is important to include both compartments into a chemistry transport model in order to understand it’s environmental fate. For this study, we coupled the atmospheric chemistry transport system CMAQ to the three dimensional Eulerian ocean-ecosystem model ECOSMO. We implemented photolysis, chemical reactions, and biologically induced transformation for elemental, oxidized, and methylated mercury species into the ocean model. Based on wind speed and temperature elemental mercury is exchanged between the ocean and the atmosphere. The model was set up for a regional domain covering the North- and Baltic Sea region and was run for a period of 14 years from 1993 to 2005. The ocean model was evaluated using DEM observations from a series of six cruises (MNB = 0.21 MNE = 0.53). Furthermore, we compared model results with and without ocean coupling to GEM observations at 5 EMEP stations. We found, that the coupled model system is able to reproduce GEM peaks which the uncoupled CTM was missing. However, the effect was limited to stations in a vicinity of 100 km to the coast (e.g. at the EMEP station DE09 in Zingst the model bias was reduced from −0.11 to 0.02 for the year 2000 and from −0.10 to −0.03 for 2005). On average, atmospheric GEM concentrations were increased by 5% in the North and Baltic Sea region.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Barthel K, Daewel U, Pushpadas D, Schrum C, Arthun M et al (2012) Resolving frontal structures: on the computational costs and pay-off using a less diffusive but computational more expensive advection scheme. Ocean Dyn. doi: 10.​1007/​s10236-012-0578-9 Barthel K, Daewel U, Pushpadas D, Schrum C, Arthun M et al (2012) Resolving frontal structures: on the computational costs and pay-off using a less diffusive but computational more expensive advection scheme. Ocean Dyn. doi: 10.​1007/​s10236-012-0578-9
Zurück zum Zitat Bieser J, Aulinger A, Matthias V, Quante M, Builtjes P (2011a) SMOKE for Europe—adaptation, modification and evaluation of a comprehensive emission model for Europe. Geosci Model Dev 4:47–68. doi: 10.​5194/​gmd-4-47-2011 CrossRef Bieser J, Aulinger A, Matthias V, Quante M, Builtjes P (2011a) SMOKE for Europe—adaptation, modification and evaluation of a comprehensive emission model for Europe. Geosci Model Dev 4:47–68. doi: 10.​5194/​gmd-4-47-2011 CrossRef
Zurück zum Zitat Bieser J, Matthias V, Travnikov O, Hedgecock MI, Gencarelli CN, De Simone F, Weigelt A, Zhu J (2014a) A diagnostic evaluation of modeled mercury wet deposition in Europe using atmospheric speciated high-resolution observations. Environ Sci Pollut Res 21(16) Bieser J, Matthias V, Travnikov O, Hedgecock MI, Gencarelli CN, De Simone F, Weigelt A, Zhu J (2014a) A diagnostic evaluation of modeled mercury wet deposition in Europe using atmospheric speciated high-resolution observations. Environ Sci Pollut Res 21(16)
Zurück zum Zitat Bieser J, Matthias V, Travnikov O, Hedgecock MI, Gencarelli CN, De Simone F, Weigelt A, Zhu J (2014b) Impact of mercury chemistry on regional concentration and deposition patterns. In: Gyring S-E, Batchvarova E (eds) Air pollution modeling and its application XXIII, pp 189–195 Bieser J, Matthias V, Travnikov O, Hedgecock MI, Gencarelli CN, De Simone F, Weigelt A, Zhu J (2014b) Impact of mercury chemistry on regional concentration and deposition patterns. In: Gyring S-E, Batchvarova E (eds) Air pollution modeling and its application XXIII, pp 189–195
Zurück zum Zitat Bullock OR, Brehme KA (2002) Atmospheric mercury simulations using the CMAQ model: formulation description and analysis of wet deposition results. Atmos Environ 36:2135–2146 CrossRef Bullock OR, Brehme KA (2002) Atmospheric mercury simulations using the CMAQ model: formulation description and analysis of wet deposition results. Atmos Environ 36:2135–2146 CrossRef
Zurück zum Zitat Daewel U, Schrum C (2013) Simulating long-term dynamics of the coupled North Sea and Baltic Sea ecosystem with ECOSMO II. Model description and validation. J Mar Sys 119–120:30–49 Daewel U, Schrum C (2013) Simulating long-term dynamics of the coupled North Sea and Baltic Sea ecosystem with ECOSMO II. Model description and validation. J Mar Sys 119–120:30–49
Zurück zum Zitat Gencarelli CN, Bieser J, Carbone F, DeSimone F, Hedgecock IM, Matthias V, Travnikov O, Yang X, Pirrone N (2016) Sensitivity study of regional mercury dispersion in the atmosphere Gencarelli CN, Bieser J, Carbone F, DeSimone F, Hedgecock IM, Matthias V, Travnikov O, Yang X, Pirrone N (2016) Sensitivity study of regional mercury dispersion in the atmosphere
Zurück zum Zitat Kuss J, Schneider B (2007) Variability of the gaseous elemental mercury Sea-Air flux of the Baltic Sea. Environ Sci Technol 41:8018–8023 CrossRef Kuss J, Schneider B (2007) Variability of the gaseous elemental mercury Sea-Air flux of the Baltic Sea. Environ Sci Technol 41:8018–8023 CrossRef
Zurück zum Zitat Kuss J (2014) Water-air gas exchange of elemental mercury: an experimentally determined mercury diffusion coefficient for Hg0 water-air flux calculations. Limnol Oceanogr 59(5):1461–146 Kuss J (2014) Water-air gas exchange of elemental mercury: an experimentally determined mercury diffusion coefficient for Hg0 water-air flux calculations. Limnol Oceanogr 59(5):1461–146
Zurück zum Zitat Nightingale PD, Malin G, Law CS, Watson AJ, Liss P et al (2000) In-situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Glob Biogl Cyc 14:373–387 CrossRef Nightingale PD, Malin G, Law CS, Watson AJ, Liss P et al (2000) In-situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Glob Biogl Cyc 14:373–387 CrossRef
Zurück zum Zitat Qureshi A (2011) Quantifying and reducing uncertainties in global mercury cycling. Disseration ETH No. 19709. Zürich, Switzerland Qureshi A (2011) Quantifying and reducing uncertainties in global mercury cycling. Disseration ETH No. 19709. Zürich, Switzerland
Zurück zum Zitat Travnikov O, Ilyin I (2009) The EMEP/MSC-E mercury modeling system. In: Pirrone N, Mason RP (eds) Mercury fate and transport in the global atmosphere. Springer, Dordecht, pp 571–587 Travnikov O, Ilyin I (2009) The EMEP/MSC-E mercury modeling system. In: Pirrone N, Mason RP (eds) Mercury fate and transport in the global atmosphere. Springer, Dordecht, pp 571–587
Zurück zum Zitat UNEP (United Nations Environmental Program) (2013) Minamata Convention on Mercury UNEP (United Nations Environmental Program) (2013) Minamata Convention on Mercury
Zurück zum Zitat Wängberg I, Schmolke S, Schager P, Munthe J, Ebinghaus R et al (2001) Estimates of air-sea exchange of mercury in the Baltic Sea. Atmos Environ 35(2001):5477–5484 CrossRef Wängberg I, Schmolke S, Schager P, Munthe J, Ebinghaus R et al (2001) Estimates of air-sea exchange of mercury in the Baltic Sea. Atmos Environ 35(2001):5477–5484 CrossRef
Metadaten
Titel
Evaluation of the Impact of Air-Sea Exchange on Atmospheric Mercury Concentrations
verfasst von
Johannes Bieser
Corinna Schrum
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-57645-9_69