Skip to main content
Erschienen in:

15.04.2023

Evident α/γ Interface Sliding in Fully Lamellar TiAl Alloy During Hot Deformation: Metallurgical Observation and Mesoscopic Modelling

verfasst von: Liang Cheng, Fengming Qiang, Bin Zhu, Jinshan Li

Erschienen in: Metals and Materials International | Ausgabe 11/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Prominent interface sliding was noted in a fully lamellar Ti–43.5Al–8Nb–0.2W–0.2B alloy deformed in (α + γ) phase region with low strain rate, which is evidenced by the drastic α/γ lamellar offsets at the kink boundaries. Due to the effective accommodation of interface sliding, there were only a few substructures produced at the kink bands in spite of the high strain localization. By using the transmission electron microscopy, the interface sliding was demonstrated to be caused by the glide of pre-existing interfacial dislocations. Based on the metallurgical observations and kinetics analysis, two mesoscopic models for interface sliding were established corresponding to two alternative rate-controlling steps, i.e., intra-lamellar dislocation climb-controlled or interfacial dislocation glide-controlled. Both of them predicted a Newtonian viscous shear behavior but the latter was manifested to be more plausible to account for the interface sliding kinetics. In addition, the reliability of the model was discussed in detail, as well as the role of interface sliding during hot deformation. The developed mesoscopic model can be readily implemented into the crystal plasticity finite element method for a better understanding of the synergistic effects of the individual processes on the high temperature plastic flow of lamellar colonies in TiAl alloys.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. Appel, J.D.H. Paul, M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology (Wiley-VCH, Weinheim, 2011) F. Appel, J.D.H. Paul, M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology (Wiley-VCH, Weinheim, 2011)
2.
Zurück zum Zitat S. Djanarthany, J.-C. Viala, J. Bouix, An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Mater. Chem. Phys. 72, 301–319 (2001)CrossRef S. Djanarthany, J.-C. Viala, J. Bouix, An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Mater. Chem. Phys. 72, 301–319 (2001)CrossRef
3.
Zurück zum Zitat F. Appel, R. Wagner, Microstructure and deformation of two-phase y-titanium aluminides. Mater. Sci. Eng. R 22, 187–268 (1998)CrossRef F. Appel, R. Wagner, Microstructure and deformation of two-phase y-titanium aluminides. Mater. Sci. Eng. R 22, 187–268 (1998)CrossRef
4.
Zurück zum Zitat H. Clemens, H. Kestler, Processing and applications of intermetallic γ-TiAl-based alloys. Adv. Eng. Mater. 2, 551–570 (2000)CrossRef H. Clemens, H. Kestler, Processing and applications of intermetallic γ-TiAl-based alloys. Adv. Eng. Mater. 2, 551–570 (2000)CrossRef
5.
Zurück zum Zitat G.J. Mahon, J.M. Howe, Transmission electron microscopy investigation of interfaces in a two-phase TiAl alloy. Metall. Trans. A 21, 1655–1662 (1990)CrossRef G.J. Mahon, J.M. Howe, Transmission electron microscopy investigation of interfaces in a two-phase TiAl alloy. Metall. Trans. A 21, 1655–1662 (1990)CrossRef
6.
Zurück zum Zitat P.M. Hazzledine, B.K. Kad, Yield and fracture of lamellar γα2 TiAl alloys. Mater. Sci. Eng. A 192–193, 340–346 (1995)CrossRef P.M. Hazzledine, B.K. Kad, Yield and fracture of lamellar γα2 TiAl alloys. Mater. Sci. Eng. A 192–193, 340–346 (1995)CrossRef
7.
Zurück zum Zitat L. Zhao, K. Tangri, TEM investigation on the interfacial boundaries in as-cast Ti3Al+TiAl alloy. Acta Metall. Mater. 39, 2209–2224 (1991)CrossRef L. Zhao, K. Tangri, TEM investigation on the interfacial boundaries in as-cast Ti3Al+TiAl alloy. Acta Metall. Mater. 39, 2209–2224 (1991)CrossRef
8.
Zurück zum Zitat H. Inui, A. Nakamura, M.H. Oh, M. Yamaguchi, High-resolution electron microscope study of lamellar boundaries in Ti-rich TiA1 polysynthetically twinned crystals. Ultramicroscopy 39, 268–278 (1991)CrossRef H. Inui, A. Nakamura, M.H. Oh, M. Yamaguchi, High-resolution electron microscope study of lamellar boundaries in Ti-rich TiA1 polysynthetically twinned crystals. Ultramicroscopy 39, 268–278 (1991)CrossRef
9.
Zurück zum Zitat P. Shang, T.T. Cheng, M. Aindow, High-resolution electron microscopy of steps on misfitting lamellar γ-α2 interfaces in a Ti-44at.%Al-8at.%Nb alloy. Philos. Mag. Lett. 80, 1–10 (2000)CrossRef P. Shang, T.T. Cheng, M. Aindow, High-resolution electron microscopy of steps on misfitting lamellar γ-α2 interfaces in a Ti-44at.%Al-8at.%Nb alloy. Philos. Mag. Lett. 80, 1–10 (2000)CrossRef
10.
Zurück zum Zitat F. Appel, P.A. Beaven, R. Wagner, Deformation processes related to interfacial boundaries in two-phase γ-titanium aluminides. Acta Metall Mater. 41, 1721–1732 (1993)CrossRef F. Appel, P.A. Beaven, R. Wagner, Deformation processes related to interfacial boundaries in two-phase γ-titanium aluminides. Acta Metall Mater. 41, 1721–1732 (1993)CrossRef
11.
Zurück zum Zitat F. Appel, Diffusion assisted dislocation climb in intermetallic gamma TiAl. Mater. Sci. Eng. A 317, 115–127 (2001)CrossRef F. Appel, Diffusion assisted dislocation climb in intermetallic gamma TiAl. Mater. Sci. Eng. A 317, 115–127 (2001)CrossRef
12.
Zurück zum Zitat S. Rao, C. Woodward, P. Hazzledine, Defect Interface Interactions, in Materials Research Society Proceedings, ed. by E.P. Kvam, A.H. King, M.J. Mills, T.D. Sands, V. Vitek (MRS, Pittsburgh, 1994), p.285 S. Rao, C. Woodward, P. Hazzledine, Defect Interface Interactions, in Materials Research Society Proceedings, ed. by E.P. Kvam, A.H. King, M.J. Mills, T.D. Sands, V. Vitek (MRS, Pittsburgh, 1994), p.285
13.
Zurück zum Zitat L. Lu, R. Siegl, A. Girshick, D.P. Pope, V. Vitek, Energy and structure of interfaces in polysynthetically twinned TiAl. Scr. Mater. 34, 971–976 (1996)CrossRef L. Lu, R. Siegl, A. Girshick, D.P. Pope, V. Vitek, Energy and structure of interfaces in polysynthetically twinned TiAl. Scr. Mater. 34, 971–976 (1996)CrossRef
14.
Zurück zum Zitat C.L. Fu, J. Zou, M.H. Yoo, Elastic constants and planar fault energies of Ti3Al, and interfacial energies at the Ti3AlTiAl interface by first-principles calculations. Scr. Metall. Mater. 33, 885–891 (1995)CrossRef C.L. Fu, J. Zou, M.H. Yoo, Elastic constants and planar fault energies of Ti3Al, and interfacial energies at the Ti3AlTiAl interface by first-principles calculations. Scr. Metall. Mater. 33, 885–891 (1995)CrossRef
15.
Zurück zum Zitat L.M. Hsiung, T.G. Nieh, Creep deformation of fully lamellar TiAl controlled by the viscous glide of interfacial dislocations. Intermetallics 7, 821–827 (1999)CrossRef L.M. Hsiung, T.G. Nieh, Creep deformation of fully lamellar TiAl controlled by the viscous glide of interfacial dislocations. Intermetallics 7, 821–827 (1999)CrossRef
16.
Zurück zum Zitat L.M. Hsiung, T.G. Nieh, B.W. Choi, J. Wadsworth, Interfacial dislocations and deformation twinning in fully lamellar TiAl. Mater. Sci. Eng. A 329–331, 637–643 (2002)CrossRef L.M. Hsiung, T.G. Nieh, B.W. Choi, J. Wadsworth, Interfacial dislocations and deformation twinning in fully lamellar TiAl. Mater. Sci. Eng. A 329–331, 637–643 (2002)CrossRef
17.
Zurück zum Zitat L.M. Hsiung, A.J. Schwartz, T.G. Nieh, In situ TEM observations of interface sliding and migration in a refined lamellar TiAl alloy. Intermetallics 12, 727–732 (2004)CrossRef L.M. Hsiung, A.J. Schwartz, T.G. Nieh, In situ TEM observations of interface sliding and migration in a refined lamellar TiAl alloy. Intermetallics 12, 727–732 (2004)CrossRef
18.
Zurück zum Zitat F. Appel, H. Clemens, F.D. Fischer, Modeling concepts for intermetallic titanium aluminides. Prog. Mater. Sci. 81, 55–124 (2016)CrossRef F. Appel, H. Clemens, F.D. Fischer, Modeling concepts for intermetallic titanium aluminides. Prog. Mater. Sci. 81, 55–124 (2016)CrossRef
19.
Zurück zum Zitat W.T. Marketz, F.D. Fischer, H. Clemens, Deformation mechanisms in TiAl intermetallics: experiments and modeling. Int. J. Plast. 19, 281–321 (2003)CrossRef W.T. Marketz, F.D. Fischer, H. Clemens, Deformation mechanisms in TiAl intermetallics: experiments and modeling. Int. J. Plast. 19, 281–321 (2003)CrossRef
20.
Zurück zum Zitat L. Chen, T.E.J. Edward, F.D. Gioacchinoc, W.J. Clegg, F.P.E. Dunne, M.S. Pham, Crystal plasticity analysis of deformation anisotropy of lamellar TiAl alloy: 3D microstructure-based modelling and in-situ micro-compression. Int. J. Plasticity 119, 344–360 (2019)CrossRef L. Chen, T.E.J. Edward, F.D. Gioacchinoc, W.J. Clegg, F.P.E. Dunne, M.S. Pham, Crystal plasticity analysis of deformation anisotropy of lamellar TiAl alloy: 3D microstructure-based modelling and in-situ micro-compression. Int. J. Plasticity 119, 344–360 (2019)CrossRef
21.
Zurück zum Zitat B.Q. Yin, X.Y. Xue, B. Tang, W.Y. Wang, H.C. Kou, J.S. Li, Experiments and crystal plasticity simulations for the deformation behavior of nanoindentation: application to the α2 phase of TiAl alloy. Mater. Sci. Eng. A 831, 142283 (2022)CrossRef B.Q. Yin, X.Y. Xue, B. Tang, W.Y. Wang, H.C. Kou, J.S. Li, Experiments and crystal plasticity simulations for the deformation behavior of nanoindentation: application to the α2 phase of TiAl alloy. Mater. Sci. Eng. A 831, 142283 (2022)CrossRef
22.
Zurück zum Zitat M.U. Ilyas, M.R. Kabir, Modelling high temperature deformation of lamellar TiAl crystal using strain-rate enhanced crystal plasticity. Mater. Sci. Eng. A 788, 139524 (2020)CrossRef M.U. Ilyas, M.R. Kabir, Modelling high temperature deformation of lamellar TiAl crystal using strain-rate enhanced crystal plasticity. Mater. Sci. Eng. A 788, 139524 (2020)CrossRef
23.
Zurück zum Zitat M.U. Ilyas, M.R. Kabir, Creep behaviour of two-phase lamellar TiAl: Crystal plasticity modelling and analysis. Intermetallics 132, 107129 (2021)CrossRef M.U. Ilyas, M.R. Kabir, Creep behaviour of two-phase lamellar TiAl: Crystal plasticity modelling and analysis. Intermetallics 132, 107129 (2021)CrossRef
24.
Zurück zum Zitat L. Cheng, J.S. Li, X.Y. Xue, B. Tang, H.C. Kou, E. Bouzy, Superplastic deformation mechanisms of high Nb containing TiAl alloy with (α2+γ) microstructure. Intermetallics 75, 62–71 (2016)CrossRef L. Cheng, J.S. Li, X.Y. Xue, B. Tang, H.C. Kou, E. Bouzy, Superplastic deformation mechanisms of high Nb containing TiAl alloy with (α2+γ) microstructure. Intermetallics 75, 62–71 (2016)CrossRef
25.
Zurück zum Zitat L. Cheng, F.M. Qiang, J.S. Li, E. Bouzy, Quantitative evaluation of the lamellar kinking&rotation on the flow softening of γ-TiAl-based alloys at elevated temperatures. Mater. Lett. 290, 129458 (2021)CrossRef L. Cheng, F.M. Qiang, J.S. Li, E. Bouzy, Quantitative evaluation of the lamellar kinking&rotation on the flow softening of γ-TiAl-based alloys at elevated temperatures. Mater. Lett. 290, 129458 (2021)CrossRef
26.
Zurück zum Zitat V.T. Witusiewicz, A.A. Bondar, U. Hecht, T.Y. Velikanova, The Al–B–Nb–Ti system IV: experimental study and thermodynamic re-evaluation of the binary Al–Nb and ternary Al–Nb–Ti systems. J. Alloy. Compd. 472, 133–161 (2009)CrossRef V.T. Witusiewicz, A.A. Bondar, U. Hecht, T.Y. Velikanova, The Al–B–Nb–Ti system IV: experimental study and thermodynamic re-evaluation of the binary Al–Nb and ternary Al–Nb–Ti systems. J. Alloy. Compd. 472, 133–161 (2009)CrossRef
27.
Zurück zum Zitat A. Morawiec, J.J. Fundenberger, E. Bouzy, J.S. Lecomte, EP: a program for determination of crystallite orientations from TEM Kikuchi and CBED diffraction patterns. J. Appl. Crystallogr. 35, 287–287 (2002)CrossRef A. Morawiec, J.J. Fundenberger, E. Bouzy, J.S. Lecomte, EP: a program for determination of crystallite orientations from TEM Kikuchi and CBED diffraction patterns. J. Appl. Crystallogr. 35, 287–287 (2002)CrossRef
28.
Zurück zum Zitat T.A. Parthasarathy, P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, Phenomenological observations of lamellar orientation effects on the creep behavior of Ti–48at%Al PST crystals. Acta Mater. 48, 541–551 (2000)CrossRef T.A. Parthasarathy, P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, Phenomenological observations of lamellar orientation effects on the creep behavior of Ti–48at%Al PST crystals. Acta Mater. 48, 541–551 (2000)CrossRef
29.
Zurück zum Zitat K. Kishida, H. Inui, M. Yamaguchi, Deformation of PST crystals of a TiAl/Ti3Al two-phase alloy at 1000 °C. Intermetallics 7, 1131–1139 (1999)CrossRef K. Kishida, H. Inui, M. Yamaguchi, Deformation of PST crystals of a TiAl/Ti3Al two-phase alloy at 1000 °C. Intermetallics 7, 1131–1139 (1999)CrossRef
30.
Zurück zum Zitat R.M. Imayev, V.M. Imayev, M. Oehring, F. Appel, Microstructural evolution during hot working of Ti aluminide alloys: Influence of phase constitution and initial casting texture. Metall. Mater. Trans. A 36, 859–867 (2005)CrossRef R.M. Imayev, V.M. Imayev, M. Oehring, F. Appel, Microstructural evolution during hot working of Ti aluminide alloys: Influence of phase constitution and initial casting texture. Metall. Mater. Trans. A 36, 859–867 (2005)CrossRef
31.
Zurück zum Zitat U. Frobel, A. Stark, Microstructural evolution in gamma titanium aluminides during severe hot-working. Metall. Mater. Trans. A 46, 439–455 (2015)CrossRef U. Frobel, A. Stark, Microstructural evolution in gamma titanium aluminides during severe hot-working. Metall. Mater. Trans. A 46, 439–455 (2015)CrossRef
32.
Zurück zum Zitat Th. Schaden, F.D. Fischer, H. Clemens, F. Appel, A. Bartels, Numerical modelling of kinking in lamellar γ-TiAl based alloys. Adv. Eng. Mater. 8, 1109–1113 (2006)CrossRef Th. Schaden, F.D. Fischer, H. Clemens, F. Appel, A. Bartels, Numerical modelling of kinking in lamellar γ-TiAl based alloys. Adv. Eng. Mater. 8, 1109–1113 (2006)CrossRef
33.
Zurück zum Zitat T.G. Nieh, J. Wadsworth, Microstructural characteristics and deformation properties in superplastic intermetallics. Mater. Sci. Eng. A 239–240, 88–96 (1997)CrossRef T.G. Nieh, J. Wadsworth, Microstructural characteristics and deformation properties in superplastic intermetallics. Mater. Sci. Eng. A 239–240, 88–96 (1997)CrossRef
34.
Zurück zum Zitat L. Cheng, J.S. Li, X.Y. Xue, B. Tang, H.C. Kou, O. Perroud, E. Bouzy, Effect of β/B2 phase on cavitation behavior during superplastic deformation of TiAl alloys. J. Alloy. Compd. 693, 749–759 (2017)CrossRef L. Cheng, J.S. Li, X.Y. Xue, B. Tang, H.C. Kou, O. Perroud, E. Bouzy, Effect of β/B2 phase on cavitation behavior during superplastic deformation of TiAl alloys. J. Alloy. Compd. 693, 749–759 (2017)CrossRef
35.
Zurück zum Zitat F. Appel, Phase Transformations and Recrystallization Processes During Synthesis, Processing and Service of TiAl Alloys, in Recrystallization, ed. by K. Sztwiertnia (IntechOpen, London, 2012). https://doi.org/10.5772/34972 F. Appel, Phase Transformations and Recrystallization Processes During Synthesis, Processing and Service of TiAl Alloys, in Recrystallization, ed. by K. Sztwiertnia (IntechOpen, London, 2012). https://​doi.​org/​10.​5772/​34972
36.
Zurück zum Zitat H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982) H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982)
37.
Zurück zum Zitat M.E. Kassner, Fundamentals of Creep in Metals and Alloys, 2nd edn. (Elsevier, Amsterdam, 2009) M.E. Kassner, Fundamentals of Creep in Metals and Alloys, 2nd edn. (Elsevier, Amsterdam, 2009)
38.
Zurück zum Zitat T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics (Cambridge University Press, Cambridge, 2005) T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics (Cambridge University Press, Cambridge, 2005)
39.
Zurück zum Zitat O.D. Sherby, J. Wadsworth, Superplasticity–recent advances and future directions. Prog. Mater. Sci. 33, 169–221 (1989)CrossRef O.D. Sherby, J. Wadsworth, Superplasticity–recent advances and future directions. Prog. Mater. Sci. 33, 169–221 (1989)CrossRef
40.
Zurück zum Zitat H. Masuda, E. Sato, Diffusional and dislocation accommodation mechanisms in superplastic materials. Acta Mater. 197, 235–252 (2020)CrossRef H. Masuda, E. Sato, Diffusional and dislocation accommodation mechanisms in superplastic materials. Acta Mater. 197, 235–252 (2020)CrossRef
41.
Zurück zum Zitat H. Fukuyo, H.C. Tsai, T. Oyama, O.D. Sherby, Superplasticity and newtonian-viscous flow in fine-grained Class I solid solution alloys. ISIJ Int. 31, 76–85 (1991)CrossRef H. Fukuyo, H.C. Tsai, T. Oyama, O.D. Sherby, Superplasticity and newtonian-viscous flow in fine-grained Class I solid solution alloys. ISIJ Int. 31, 76–85 (1991)CrossRef
42.
Zurück zum Zitat A. Ball, M.M. Hutchison, Superplasticity in the aluminium-zinc eutectoid. Metal Sci. J. 3, 1–7 (1969)CrossRef A. Ball, M.M. Hutchison, Superplasticity in the aluminium-zinc eutectoid. Metal Sci. J. 3, 1–7 (1969)CrossRef
43.
Zurück zum Zitat H.W. Hayden, S. Floreen, P.D. Goodell, The deformation mechanisms of superplasticity. Metall. Trans. 3, 833–842 (1972)CrossRef H.W. Hayden, S. Floreen, P.D. Goodell, The deformation mechanisms of superplasticity. Metall. Trans. 3, 833–842 (1972)CrossRef
44.
Zurück zum Zitat T.G. Langdon, Grain boundary sliding as a deformation mechanism during creep. Phil. Mag. 22, 689–700 (1970)CrossRef T.G. Langdon, Grain boundary sliding as a deformation mechanism during creep. Phil. Mag. 22, 689–700 (1970)CrossRef
45.
Zurück zum Zitat J. Weertman, Theory of steady-state creep based on dislocation climb. J. Appl. Phys. 26, 1213–1217 (1955)CrossRef J. Weertman, Theory of steady-state creep based on dislocation climb. J. Appl. Phys. 26, 1213–1217 (1955)CrossRef
46.
Zurück zum Zitat J.S. Koehler, The production of large tensile stresses by dislocations. Phys. Rev. 85, 480–481 (1952)CrossRef J.S. Koehler, The production of large tensile stresses by dislocations. Phys. Rev. 85, 480–481 (1952)CrossRef
47.
Zurück zum Zitat R.S. Gates, The role of grain boundary dislocations in grain boundary sliding. Acta Metall. 21, 855–864 (1973)CrossRef R.S. Gates, The role of grain boundary dislocations in grain boundary sliding. Acta Metall. 21, 855–864 (1973)CrossRef
48.
Zurück zum Zitat E. Arzt, M.F. Ashby, R.A. Verrall, Interface controlled diffusional creep. Acta Metall. 31, 1977–1989 (1983)CrossRef E. Arzt, M.F. Ashby, R.A. Verrall, Interface controlled diffusional creep. Acta Metall. 31, 1977–1989 (1983)CrossRef
49.
Zurück zum Zitat L. Cheng, J.S. Li, X.Y. Xue, B. Tang, H.C. Kou, E. Bouzy, General features of high temperature deformation kinetics for γ-TiAl-based alloys with DP/NG microstructures: Part I: a survey of mechanical data and development of unified rate-equations. Mater. Sci. Eng. A 678, 389–401 (2016)CrossRef L. Cheng, J.S. Li, X.Y. Xue, B. Tang, H.C. Kou, E. Bouzy, General features of high temperature deformation kinetics for γ-TiAl-based alloys with DP/NG microstructures: Part I: a survey of mechanical data and development of unified rate-equations. Mater. Sci. Eng. A 678, 389–401 (2016)CrossRef
50.
Zurück zum Zitat S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev, S.L. Semiatin, Microstructure evolution during warm working of Ti–6Al–4V with a colony-α microstructure. Acta Mater. 57, 2470–2481 (2009)CrossRef S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev, S.L. Semiatin, Microstructure evolution during warm working of Ti–6Al–4V with a colony-α microstructure. Acta Mater. 57, 2470–2481 (2009)CrossRef
51.
Zurück zum Zitat U.F. Kocks, G.R. Canova, How many slip systems, and which?, in Deformation of Polycrystals Mechanisms and Microstructures. ed. by N. Hansen, A. Horsewell, T. Leffers, H. Lilholt (Riso National Laboratory, Roskilde, 1981), p.35 U.F. Kocks, G.R. Canova, How many slip systems, and which?, in Deformation of Polycrystals Mechanisms and Microstructures. ed. by N. Hansen, A. Horsewell, T. Leffers, H. Lilholt (Riso National Laboratory, Roskilde, 1981), p.35
52.
Zurück zum Zitat S.V. Divinski, F. Hisker, A. Bartels, C. Herzig, Interphase boundary diffusion of 44Ti in two-phase TiAl with lamellar α2/γ structure. Scr. Mater. 45, 161–167 (2001)CrossRef S.V. Divinski, F. Hisker, A. Bartels, C. Herzig, Interphase boundary diffusion of 44Ti in two-phase TiAl with lamellar α2/γ structure. Scr. Mater. 45, 161–167 (2001)CrossRef
53.
Zurück zum Zitat H. Conrad, J. Narayan, On the grain size softening in nanocrystalline materials. Scr. Mater. 42, 1025–1030 (2000)CrossRef H. Conrad, J. Narayan, On the grain size softening in nanocrystalline materials. Scr. Mater. 42, 1025–1030 (2000)CrossRef
54.
Zurück zum Zitat Z.H. Li, G.W. Zhou, D.Y. Li, H.M. Wang, W.Q. Tang, Y.H. Peng, H.S. Zurob, P.D. Wu, Crystal plasticity based modeling of grain boundary sliding in magnesium alloy AZ31B sheet. Trans. Nonferrous Met. Soc. China 31, 138–155 (2021)CrossRef Z.H. Li, G.W. Zhou, D.Y. Li, H.M. Wang, W.Q. Tang, Y.H. Peng, H.S. Zurob, P.D. Wu, Crystal plasticity based modeling of grain boundary sliding in magnesium alloy AZ31B sheet. Trans. Nonferrous Met. Soc. China 31, 138–155 (2021)CrossRef
55.
Zurück zum Zitat B. Zhu, R.J. Asaro, P. Krysl, R. Bailey, Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals. Acta Mater. 53, 4825–4838 (2005)CrossRef B. Zhu, R.J. Asaro, P. Krysl, R. Bailey, Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals. Acta Mater. 53, 4825–4838 (2005)CrossRef
56.
Zurück zum Zitat R.E. Schafrik, Dynamic elastic moduli of the titanium aluminides. Metall. Trans. A 8, 1003–1006 (1977)CrossRef R.E. Schafrik, Dynamic elastic moduli of the titanium aluminides. Metall. Trans. A 8, 1003–1006 (1977)CrossRef
57.
Zurück zum Zitat Y. Mishin, C. Herzig, Diffusion in the Ti–Al system. Acta Mater. 48, 589–623 (2000)CrossRef Y. Mishin, C. Herzig, Diffusion in the Ti–Al system. Acta Mater. 48, 589–623 (2000)CrossRef
58.
Zurück zum Zitat R.L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679–1682 (1963)CrossRef R.L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679–1682 (1963)CrossRef
Metadaten
Titel
Evident α/γ Interface Sliding in Fully Lamellar TiAl Alloy During Hot Deformation: Metallurgical Observation and Mesoscopic Modelling
verfasst von
Liang Cheng
Fengming Qiang
Bin Zhu
Jinshan Li
Publikationsdatum
15.04.2023
Verlag
The Korean Institute of Metals and Materials
Erschienen in
Metals and Materials International / Ausgabe 11/2023
Print ISSN: 1598-9623
Elektronische ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-023-01440-8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.