Skip to main content
Erschienen in: Journal of Materials Science 7/2019

02.01.2019 | Polymers

EVOH in situ fibrillation and its effect of strengthening, toughening and hydrophilic modification on PVDF hollow fiber microfiltration membrane via TIPS process

verfasst von: Zhenyu Cui, Xiuxiu Tang, Wei Li, Haonan Liu, Jing Zhang, Hong Wang, Jianxin Li

Erschienen in: Journal of Materials Science | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to enhance the strength and overcome the poor antifouling capacity of poly(vinylidene fluoride) (PVDF) membrane used in water treatment, herein, poly(ethylene-co-vinyl alcohol) (EVOH) was selected and the PVDF/EVOH blend hollow fiber microfiltration membrane was prepared via the thermally induced phase separation (TIPS) technique. The morphology for the pristine and blend membrane was compared, and the distribution of EVOH on outer surface and within matrix was explored. The fibrous-shaped EVOH enhanced the breaking strength of the membrane markedly (up to 13.63 MPa) due to the in situ fibrillation; especially, when the blend membrane was immersed into water, the internal plasticization of water molecular enhanced the toughness of the membrane and the elongation at break increased up to 86.39% compared with 27.63% for the corresponding dry membrane and 36.62% for the pristine membrane, respectively. The addition of EVOH introduced hydroxyl group into the bulk and thus endowed the membrane with a better hydrophilicity (the contact angle is as low as 43°) and higher pure water flux (up to 449.11 L m−2 h−1) compared with pristine PVDF membrane. Moreover, the blend membrane showed a better rejection of carbonic particle (nearly 100%) and higher flux recovery rate (up to 87.30%). The present investigation offers an effective and simple pattern to regulate microstructure and enhance mechanical strength, flux and hydrophilicity of the polymeric microfiltration membrane via the TIPS process for water treatment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Kim JF, Kim JH, Lee YM, Drioli E (2016) Thermally induced phase separation and electrospinning methods for emerging membrane applications: a review. AIChE 62:461–490CrossRef Kim JF, Kim JH, Lee YM, Drioli E (2016) Thermally induced phase separation and electrospinning methods for emerging membrane applications: a review. AIChE 62:461–490CrossRef
3.
Zurück zum Zitat Elhaj A, Irgum K (2014) Monolithic space-filling porous materials from engineering plastics by thermally induced phase separation. ACS Appl Mater Interfaces 6(18):15653–15666CrossRef Elhaj A, Irgum K (2014) Monolithic space-filling porous materials from engineering plastics by thermally induced phase separation. ACS Appl Mater Interfaces 6(18):15653–15666CrossRef
4.
Zurück zum Zitat Lloyd DR (1990) Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. J Membr Sci 52(3):239–261CrossRef Lloyd DR (1990) Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. J Membr Sci 52(3):239–261CrossRef
6.
Zurück zum Zitat Xu Z, Wu T, Shi J, Wang W, Teng K (2016) Manipulating migration behavior of magnetic graphene oxide via magnetic field induced casting and phase separation toward high-performance hybrid ultrafiltration membranes. ACS Appl Mater Interfaces 8(28):18418–18429CrossRef Xu Z, Wu T, Shi J, Wang W, Teng K (2016) Manipulating migration behavior of magnetic graphene oxide via magnetic field induced casting and phase separation toward high-performance hybrid ultrafiltration membranes. ACS Appl Mater Interfaces 8(28):18418–18429CrossRef
7.
Zurück zum Zitat Li Q, Bi QY, Zhou B, Wang XL (2012) Zwitterionic sulfobetaine-grafted poly (vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization. Appl Surf Sci 258(10):4707–4717CrossRef Li Q, Bi QY, Zhou B, Wang XL (2012) Zwitterionic sulfobetaine-grafted poly (vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization. Appl Surf Sci 258(10):4707–4717CrossRef
8.
Zurück zum Zitat Liang S, Kang Y, Tiraferri A, Giannelis EP (2013) Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via post fabrication grafting of surface-tailored silica nanoparticles. ACS Appl Mater Interfaces 5(14):6694–6703CrossRef Liang S, Kang Y, Tiraferri A, Giannelis EP (2013) Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via post fabrication grafting of surface-tailored silica nanoparticles. ACS Appl Mater Interfaces 5(14):6694–6703CrossRef
9.
Zurück zum Zitat Qin A, Li X, Zhao X, Liu D (2015) Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Appl Mater Interfaces 7(16):8427–8436CrossRef Qin A, Li X, Zhao X, Liu D (2015) Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Appl Mater Interfaces 7(16):8427–8436CrossRef
10.
Zurück zum Zitat Woo SH, Lee JS, Lee HH, Park J (2015) Preparation method of crack-free PVDF microfiltration membrane with enhanced antifouling characteristics. ACS Appl Mater Interfaces 7(30):16466–16477CrossRef Woo SH, Lee JS, Lee HH, Park J (2015) Preparation method of crack-free PVDF microfiltration membrane with enhanced antifouling characteristics. ACS Appl Mater Interfaces 7(30):16466–16477CrossRef
11.
Zurück zum Zitat Rajabzadeh S, Maruyama T, Ohmukai Y (2009) Preparation of PVDF/PMMA blend hollow fiber membrane via thermally induced phase separation (TIPS) method. Sep Purif Technol 66(1):76–83CrossRef Rajabzadeh S, Maruyama T, Ohmukai Y (2009) Preparation of PVDF/PMMA blend hollow fiber membrane via thermally induced phase separation (TIPS) method. Sep Purif Technol 66(1):76–83CrossRef
12.
Zurück zum Zitat Bhalani DV, Bera A, Chandel AK, Kumar SB (2017) Multifunctionalization of Poly(vinylidene fluoride)/reactive copolymer blend membranes for broad spectrum applications. ACS Appl Mater Interfaces 9(3):3102–3112CrossRef Bhalani DV, Bera A, Chandel AK, Kumar SB (2017) Multifunctionalization of Poly(vinylidene fluoride)/reactive copolymer blend membranes for broad spectrum applications. ACS Appl Mater Interfaces 9(3):3102–3112CrossRef
13.
Zurück zum Zitat Cui Z, Hassankiadeh NT, Lee SY, Lee JM (2013) Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation. J Membr Sci 444:223–236CrossRef Cui Z, Hassankiadeh NT, Lee SY, Lee JM (2013) Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation. J Membr Sci 444:223–236CrossRef
14.
Zurück zum Zitat Ji GL, Zhu LP, Zhu BK (2008) Structure formation and characterization of PVDF hollow fiber membrane prepared via TIPS with diluent mixture. J Membr Sci 319:264–270CrossRef Ji GL, Zhu LP, Zhu BK (2008) Structure formation and characterization of PVDF hollow fiber membrane prepared via TIPS with diluent mixture. J Membr Sci 319:264–270CrossRef
15.
Zurück zum Zitat Ma T, Cui Z, Wu Y, Qin S, Wang H (2013) Preparation of PVDF based blend microporous membranes for lithium ion batteries by thermally induced phase separation: I. Effect of PMMA on the membrane formation process and the properties. J Membr Sci 444:213–222CrossRef Ma T, Cui Z, Wu Y, Qin S, Wang H (2013) Preparation of PVDF based blend microporous membranes for lithium ion batteries by thermally induced phase separation: I. Effect of PMMA on the membrane formation process and the properties. J Membr Sci 444:213–222CrossRef
16.
Zurück zum Zitat Cheng Q, Cui Z, Li J, Qin S, Yan F, Li J (2014) Preparation and performance of polymer electrolyte based on poly(vinylidene fluoride)/polysulfone blend membrane via thermally induced phase separation process for lithium ion battery. J Power Sour 266:401–413CrossRef Cheng Q, Cui Z, Li J, Qin S, Yan F, Li J (2014) Preparation and performance of polymer electrolyte based on poly(vinylidene fluoride)/polysulfone blend membrane via thermally induced phase separation process for lithium ion battery. J Power Sour 266:401–413CrossRef
17.
Zurück zum Zitat Wu Z, Cui Z, Li T, Qin S, He B (2017) Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process. Appl Surf Sci 419:429–438CrossRef Wu Z, Cui Z, Li T, Qin S, He B (2017) Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process. Appl Surf Sci 419:429–438CrossRef
18.
Zurück zum Zitat Wang B, Huang HX, Wang ZY (2015) Process-induced phase and crystal morphologies in water-assisted injection molded polypropylene/polymeric β-nucleating agent blend parts. Polym Eng Sci 55:1698–1705CrossRef Wang B, Huang HX, Wang ZY (2015) Process-induced phase and crystal morphologies in water-assisted injection molded polypropylene/polymeric β-nucleating agent blend parts. Polym Eng Sci 55:1698–1705CrossRef
19.
Zurück zum Zitat Xia XC, Zhang QP, Wang L, Feng JM (2014) The complex crystalline structure of polyethylene/polycarbonate microfibril blends in a secondary flow field. Macromol Chem Phys 215:1146–1151CrossRef Xia XC, Zhang QP, Wang L, Feng JM (2014) The complex crystalline structure of polyethylene/polycarbonate microfibril blends in a secondary flow field. Macromol Chem Phys 215:1146–1151CrossRef
20.
Zurück zum Zitat Lv R, Zhou J, Du QG, Wang HT, Zhong W (2006) Preparation and characterization of EVOH/PVP membranes via thermally induced phase separation. J Membr Sci 281(1–2):700–706CrossRef Lv R, Zhou J, Du QG, Wang HT, Zhong W (2006) Preparation and characterization of EVOH/PVP membranes via thermally induced phase separation. J Membr Sci 281(1–2):700–706CrossRef
21.
Zurück zum Zitat Wang G, Uyama H (2015) Reactive poly (ethylene-co-vinyl alcohol) monoliths with tunable pore morphology for enzyme immobilization. Colloid Polym Sci 293(8):2429–2435CrossRef Wang G, Uyama H (2015) Reactive poly (ethylene-co-vinyl alcohol) monoliths with tunable pore morphology for enzyme immobilization. Colloid Polym Sci 293(8):2429–2435CrossRef
22.
Zurück zum Zitat Bonyadi S, Mackley M (2012) The development of novel micro-capillary film membranes. J Membr Sci 389:137–147CrossRef Bonyadi S, Mackley M (2012) The development of novel micro-capillary film membranes. J Membr Sci 389:137–147CrossRef
23.
Zurück zum Zitat Lima JAD, Felisberti MI (2010) Phase diagrams of poly(ethylene-co-vinyl alcohol) and dimethyl formamide solutions exhibiting both liquid-liquid and solid-liquid phase separation. J Appl Polym Sci 118:1787–1795 Lima JAD, Felisberti MI (2010) Phase diagrams of poly(ethylene-co-vinyl alcohol) and dimethyl formamide solutions exhibiting both liquid-liquid and solid-liquid phase separation. J Appl Polym Sci 118:1787–1795
24.
Zurück zum Zitat Lima JAD, Felisberti MI (2009) Porous polymer structures obtained via the TIPS process from EVOH/PMMA/DMF solutions. J Membr Sci 344(1–2):237–243CrossRef Lima JAD, Felisberti MI (2009) Porous polymer structures obtained via the TIPS process from EVOH/PMMA/DMF solutions. J Membr Sci 344(1–2):237–243CrossRef
25.
Zurück zum Zitat Zhou J, Zhang H, Wang H, Du Q (2009) Effect of cooling baths on EVOH microporous membrane structures in thermally induced phase separation. J Membr Sci 343(1–2):104–109CrossRef Zhou J, Zhang H, Wang H, Du Q (2009) Effect of cooling baths on EVOH microporous membrane structures in thermally induced phase separation. J Membr Sci 343(1–2):104–109CrossRef
27.
Zurück zum Zitat Huang Y, Xiao CF, Huang QL, Liu HL, Hao JQ, Song L (2018) Magnetic field induced orderly arrangement of Fe3O4/GO composite particles for preparation of Fe3O4/GO/PVDF membrane. J Membr Sci 548:184–193CrossRef Huang Y, Xiao CF, Huang QL, Liu HL, Hao JQ, Song L (2018) Magnetic field induced orderly arrangement of Fe3O4/GO composite particles for preparation of Fe3O4/GO/PVDF membrane. J Membr Sci 548:184–193CrossRef
29.
Zurück zum Zitat Shang M, Matsuyama H, Maki T (2002) Preparation and characterization of Poly(ethylene co-vinyl alcohol) membranes via thermally induced liquid–liquid phase separation. J Appl Polym Sci 87(5):853–860CrossRef Shang M, Matsuyama H, Maki T (2002) Preparation and characterization of Poly(ethylene co-vinyl alcohol) membranes via thermally induced liquid–liquid phase separation. J Appl Polym Sci 87(5):853–860CrossRef
30.
Zurück zum Zitat Gupta S, Yuan X, Chung TCM (2014) Isothermal and non-isothermal crystallization kinetics of hydroxyl-functionalized polypropylene. Polymer 55(3):924–935CrossRef Gupta S, Yuan X, Chung TCM (2014) Isothermal and non-isothermal crystallization kinetics of hydroxyl-functionalized polypropylene. Polymer 55(3):924–935CrossRef
31.
Zurück zum Zitat Cui L, Sheng JB, Peng L, Tao YZ (2010) Effect of hydrogen bond on isothermal crystallization behavior of PA612/EVOH blend. Plastics 39(3):82–84 Cui L, Sheng JB, Peng L, Tao YZ (2010) Effect of hydrogen bond on isothermal crystallization behavior of PA612/EVOH blend. Plastics 39(3):82–84
32.
Zurück zum Zitat Peng SX, Song XY, Ying JR (2000) Study on the improved ways and characteristics of EVOH resin. Plast Sci Technol 4:23–25 Peng SX, Song XY, Ying JR (2000) Study on the improved ways and characteristics of EVOH resin. Plast Sci Technol 4:23–25
33.
Zurück zum Zitat Lü X, Wang X, Guo L, Zhang Q (2016) Preparation of PU modified PVDF antifouling membrane and its hydrophilic performance. J Membr Sci 520:933–940CrossRef Lü X, Wang X, Guo L, Zhang Q (2016) Preparation of PU modified PVDF antifouling membrane and its hydrophilic performance. J Membr Sci 520:933–940CrossRef
34.
Zurück zum Zitat Ge C, Lei K, Aldi R (2015) Barrier, mechanical, and thermal properties of the three-layered co-extruded blown polyethylene/ethylene–vinyl alcohol/low density polyethylene film without tie layers. J Thermoplast Compos 30(6):794–807CrossRef Ge C, Lei K, Aldi R (2015) Barrier, mechanical, and thermal properties of the three-layered co-extruded blown polyethylene/ethylene–vinyl alcohol/low density polyethylene film without tie layers. J Thermoplast Compos 30(6):794–807CrossRef
35.
Zurück zum Zitat Li ZK, Lang WZ, Miao W, Yan X (2016) Preparation and properties of PVDF/SiO2@GO nanohybrid membranes via thermally induced phase separation method. J Membr Sci 511:151–161CrossRef Li ZK, Lang WZ, Miao W, Yan X (2016) Preparation and properties of PVDF/SiO2@GO nanohybrid membranes via thermally induced phase separation method. J Membr Sci 511:151–161CrossRef
36.
Zurück zum Zitat Kucukpinar E, Doruker P (2004) Effect of absorbed water on oxygen transport in EVOH matrices. A molecular dynamics study. Polymer 45(10):3555–3564CrossRef Kucukpinar E, Doruker P (2004) Effect of absorbed water on oxygen transport in EVOH matrices. A molecular dynamics study. Polymer 45(10):3555–3564CrossRef
37.
Zurück zum Zitat Soto PJA, Fatyeyeva K, Chappey C, Marais S (2017) Layered Poly(ethylene-co-vinyl acetate)/Poly (ethylene-co-vinyl alcohol) membranes with enhanced water separation selectivity and performance. ACS Appl Mater Interfaces 9(7):6411–6423CrossRef Soto PJA, Fatyeyeva K, Chappey C, Marais S (2017) Layered Poly(ethylene-co-vinyl acetate)/Poly (ethylene-co-vinyl alcohol) membranes with enhanced water separation selectivity and performance. ACS Appl Mater Interfaces 9(7):6411–6423CrossRef
38.
Zurück zum Zitat Shang MX, Matsuyama H, Teramoto M, Lloyd DR (2003) Preparation and membrane performance of poly(ethylene-co-vinyl alcohol) hollow fiber membrane via thermally induced phase separation. Polymer 44(24):7441–7447CrossRef Shang MX, Matsuyama H, Teramoto M, Lloyd DR (2003) Preparation and membrane performance of poly(ethylene-co-vinyl alcohol) hollow fiber membrane via thermally induced phase separation. Polymer 44(24):7441–7447CrossRef
39.
Zurück zum Zitat An SL (2005) The practical textbook of membrane science and technology. Chemical Industry Press, Beijing, p 109 An SL (2005) The practical textbook of membrane science and technology. Chemical Industry Press, Beijing, p 109
Metadaten
Titel
EVOH in situ fibrillation and its effect of strengthening, toughening and hydrophilic modification on PVDF hollow fiber microfiltration membrane via TIPS process
verfasst von
Zhenyu Cui
Xiuxiu Tang
Wei Li
Haonan Liu
Jing Zhang
Hong Wang
Jianxin Li
Publikationsdatum
02.01.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-03281-y

Weitere Artikel der Ausgabe 7/2019

Journal of Materials Science 7/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.