Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2018 | OriginalPaper | Buchkapitel

14. Evolutionary Algorithms

verfasst von: David Corne, Michael A. Lones

Erschienen in: Handbook of Heuristics

Verlag: Springer International Publishing

share
TEILEN

Abstract

Evolutionary algorithms (EAs) are population-based metaheuristics, originally inspired by aspects of natural evolution. Modern varieties incorporate a broad mixture of search mechanisms, and tend to blend inspiration from nature with pragmatic engineering concerns; however, all EAs essentially operate by maintaining a population of potential solutions and in some way artificially ‘evolving’ that population over time. Particularly well-known categories of EAs include genetic algorithms (GAs), Genetic Programming (GP), and Evolution Strategies (ES). EAs have proven very successful in practical applications, particularly those requiring solutions to combinatorial problems. EAs are highly flexible and can be configured to address any optimization task, without the requirements for reformulation and/or simplification that would be needed for other techniques. However, this flexibility goes hand in hand with a cost: the tailoring of an EA’s configuration and parameters, so as to provide robust performance for a given class of tasks, is often a complex and time-consuming process. This tailoring process is one of the many ongoing research areas associated with EAs.
Literatur
1.
Zurück zum Zitat Lones MA (2014) Metaheuristics in nature-inspired algorithms. In: Proceedings of genetic and evolutionary computation conference (GECCO 2014), workshop on metaheuristic design patterns (MetaDeeP). ACM, pp 1419–1422 Lones MA (2014) Metaheuristics in nature-inspired algorithms. In: Proceedings of genetic and evolutionary computation conference (GECCO 2014), workshop on metaheuristic design patterns (MetaDeeP). ACM, pp 1419–1422
2.
Zurück zum Zitat Fogel DB (1998) Evolutionary computation: the fossil record. Wiley-IEEE Press, Piscataway Fogel DB (1998) Evolutionary computation: the fossil record. Wiley-IEEE Press, Piscataway
4.
Zurück zum Zitat Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31. https://​doi.​org/​10.​1109/​TEVC.​2010.​2059031. Available: http://​ieeexplore.​ieee.​org/​xpl/​login.​jsp?​tp=​&​arnumber=​5601760&​url=​http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs∼all.jsp%3Farnumber%3D5601760 Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31. https://​doi.​org/​10.​1109/​TEVC.​2010.​2059031. Available: http://​ieeexplore.​ieee.​org/​xpl/​login.​jsp?​tp=​&​arnumber=​5601760&​url=​http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs∼all.jsp%3Farnumber%3D5601760
8.
Zurück zum Zitat Hansen N, Auger A, Finck S, Ros R (2010) Real-parameter black-box optimization benchmarking 2010: experimental setup. INRIA research report No. 7215. INRIA Hansen N, Auger A, Finck S, Ros R (2010) Real-parameter black-box optimization benchmarking 2010: experimental setup. INRIA research report No. 7215. INRIA
9.
Zurück zum Zitat Liang J, Qu B, Suganthan P, Hernández-Díaz A (2013) Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Technical report 201212. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, pp 3–18 Liang J, Qu B, Suganthan P, Hernández-Díaz A (2013) Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Technical report 201212. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, pp 3–18
10.
Zurück zum Zitat Tang K, Li X, Suganthan PN, Yang Z, Weise T (2009) Benchmark functions for the CEC’2010 special session and competition on large-scale global optimization. Technical report. Nature Inspired Computation and Applications Laboratory, University of Science and Technology of China Tang K, Li X, Suganthan PN, Yang Z, Weise T (2009) Benchmark functions for the CEC’2010 special session and competition on large-scale global optimization. Technical report. Nature Inspired Computation and Applications Laboratory, University of Science and Technology of China
12.
Zurück zum Zitat Igel C, Toussaint M (2003) On classes of functions for which no free lunch results hold. Inf Process Lett 86(6):317–321 Igel C, Toussaint M (2003) On classes of functions for which no free lunch results hold. Inf Process Lett 86(6):317–321
15.
Zurück zum Zitat Koza J (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge Koza J (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge
17.
Zurück zum Zitat Veenhuis CB (2009) Tree based differential evolution. Lect Notes Comput Sci 5481:208–219 Veenhuis CB (2009) Tree based differential evolution. Lect Notes Comput Sci 5481:208–219
23.
Zurück zum Zitat Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech concurrent computation program, C3P report 826 Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech concurrent computation program, C3P report 826
26.
Zurück zum Zitat Ross P (2005) Hyper-heuristics. In: Search methodologies. Springer, Berlin, pp 529–556 Ross P (2005) Hyper-heuristics. In: Search methodologies. Springer, Berlin, pp 529–556
29.
Zurück zum Zitat Sareni B, Krahenbuhl L (1998) Fitness sharing and niching methods revisited. IEEE Trans Evol Comput 2(3):97–106. https://​doi.​org/​10.​1109/​4235.​735432. Available: http://​ieeexplore.​ieee.​org/​xpl/​login.​jsp?​tp=​&​arnumber=​735432&​url=​http%3A%2F%2Fieeexplore.ieee.org%2Fiel4%2F4235%2F15834%2F00735432.pdf%3Farnumber%3D735432 Sareni B, Krahenbuhl L (1998) Fitness sharing and niching methods revisited. IEEE Trans Evol Comput 2(3):97–106. https://​doi.​org/​10.​1109/​4235.​735432. Available: http://​ieeexplore.​ieee.​org/​xpl/​login.​jsp?​tp=​&​arnumber=​735432&​url=​http%3A%2F%2Fieeexplore.ieee.org%2Fiel4%2F4235%2F15834%2F00735432.pdf%3Farnumber%3D735432
32.
Zurück zum Zitat Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197 CrossRef Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197 CrossRef
33.
Zurück zum Zitat Knowles J, Corne D (1999) The pareto archived evolution strategy: a new baseline algorithm for paretomultiobjective optimisation. In: Proceedings of the 1999 congress on evolutionary computation (CEC’99), vol 1. IEEE Knowles J, Corne D (1999) The pareto archived evolution strategy: a new baseline algorithm for paretomultiobjective optimisation. In: Proceedings of the 1999 congress on evolutionary computation (CEC’99), vol 1. IEEE
34.
Zurück zum Zitat Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731 CrossRef Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731 CrossRef
35.
Zurück zum Zitat Corne DW, Deb K, Fleming PJ, Knowles JD (2003) The good of the many outweighs the good of the one: evolutionary multi-objective optimization. IEEE Connect Newslett 1(1):9–13 Corne DW, Deb K, Fleming PJ, Knowles JD (2003) The good of the many outweighs the good of the one: evolutionary multi-objective optimization. IEEE Connect Newslett 1(1):9–13
37.
Zurück zum Zitat Goldberg D, Smith R (1987) Nonstationary function optimization using genetic algorithm with dominance and diploidy. In: Proceedings of the second international conference on genetic algorithms and their application (ICGA). Laurence Erlbaum Associates, pp 59–68 Goldberg D, Smith R (1987) Nonstationary function optimization using genetic algorithm with dominance and diploidy. In: Proceedings of the second international conference on genetic algorithms and their application (ICGA). Laurence Erlbaum Associates, pp 59–68
43.
Zurück zum Zitat Urbanowicz RJ, Moore JH (2009) Learning classifier systems: a complete introduction, review, and roadmap. J Artif Evol Appl 2009:1–25 CrossRef Urbanowicz RJ, Moore JH (2009) Learning classifier systems: a complete introduction, review, and roadmap. J Artif Evol Appl 2009:1–25 CrossRef
46.
Zurück zum Zitat Fogel LJ (1962) Autonomous automata. Ind Res 4(2):14–19 Fogel LJ (1962) Autonomous automata. Ind Res 4(2):14–19
47.
Zurück zum Zitat Ochoa G, Blum C, Chicano F (2015) Evolutionary computation in combinatorial optimization. Springer International Publishing: Imprint: Springer, Cham Ochoa G, Blum C, Chicano F (2015) Evolutionary computation in combinatorial optimization. Springer International Publishing: Imprint: Springer, Cham
48.
Zurück zum Zitat Bajpai RP (ed) (2014) Innovative design, analysis and development practices in aerospace and automotive engineering: I-Dad 2014, 22–24 Feb 2014. Springer Science & Business, Singapore Bajpai RP (ed) (2014) Innovative design, analysis and development practices in aerospace and automotive engineering: I-Dad 2014, 22–24 Feb 2014. Springer Science & Business, Singapore
49.
Zurück zum Zitat Gaurav A, Kumar V, Nigam D (2012) New applications of soft computing in bioinformatics: a review. J Pure Appl Sci Tech 11(1):12–22 Gaurav A, Kumar V, Nigam D (2012) New applications of soft computing in bioinformatics: a review. J Pure Appl Sci Tech 11(1):12–22
50.
Zurück zum Zitat Gupta SK, Ramteke M (2014) Applications of genetic algorithms in chemical engineering II: case studies. In: Applications of metaheuristics in process engineering. Springer, Cham, pp 61–87 Gupta SK, Ramteke M (2014) Applications of genetic algorithms in chemical engineering II: case studies. In: Applications of metaheuristics in process engineering. Springer, Cham, pp 61–87
51.
Zurück zum Zitat Bentley P, Corne D (2002) Creative evolutionary systems. Morgan Kaufmann, San Francisco Bentley P, Corne D (2002) Creative evolutionary systems. Morgan Kaufmann, San Francisco
52.
Zurück zum Zitat Chen SH (ed) (2012) Genetic algorithms and genetic programming in computational finance. Springer Science & Business Media, New York Chen SH (ed) (2012) Genetic algorithms and genetic programming in computational finance. Springer Science & Business Media, New York
53.
Zurück zum Zitat Gen M, Cheng R (1996) Genetic algorithms and manufacturing systems design, 1st edn. Wiley, New York CrossRef Gen M, Cheng R (1996) Genetic algorithms and manufacturing systems design, 1st edn. Wiley, New York CrossRef
54.
Zurück zum Zitat Adeli H, Sarma KC (2006) Cost optimization of structures: fuzzy logic, genetic algorithms, and parallel computing. Wiley, Chichester CrossRef Adeli H, Sarma KC (2006) Cost optimization of structures: fuzzy logic, genetic algorithms, and parallel computing. Wiley, Chichester CrossRef
56.
Zurück zum Zitat Lones M, Alty JE, Lacy SE, Jamieson DR, Possin KL, Schuff N, Smith SL (2013) Evolving classifiers to inform clinical assessment of parkinson’s disease. In: 2013 IEEE symposium on computational intelligence in healthcare and e-health (CICARE), pp. 76–82. IEEE Lones M, Alty JE, Lacy SE, Jamieson DR, Possin KL, Schuff N, Smith SL (2013) Evolving classifiers to inform clinical assessment of parkinson’s disease. In: 2013 IEEE symposium on computational intelligence in healthcare and e-health (CICARE), pp. 76–82. IEEE
57.
Zurück zum Zitat Lones M, Turner AP, Caves LS, Stepney S, Smith SL, Tyrrell AM (2014) Artificial biochemical networks: evolving dynamical systems to control dynamical systems. IEEE Trans Evol Comput 18(2):145–166 CrossRef Lones M, Turner AP, Caves LS, Stepney S, Smith SL, Tyrrell AM (2014) Artificial biochemical networks: evolving dynamical systems to control dynamical systems. IEEE Trans Evol Comput 18(2):145–166 CrossRef
58.
Zurück zum Zitat Lones MA, Smith SL, Tyrrell AM, Alty JE, Jamieson DS (2013) Characterising neurological time series data using biologically motivated networks of coupled discrete maps. BioSystems 112(2):94–101 CrossRef Lones MA, Smith SL, Tyrrell AM, Alty JE, Jamieson DS (2013) Characterising neurological time series data using biologically motivated networks of coupled discrete maps. BioSystems 112(2):94–101 CrossRef
Metadaten
Titel
Evolutionary Algorithms
verfasst von
David Corne
Michael A. Lones
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-07124-4_27

Premium Partner