Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

13.02.2020 | Methodologies and Application | Ausgabe 17/2020

Soft Computing 17/2020

Evolving semantic object segmentation methods automatically by genetic programming from images and image processing operators

Zeitschrift:
Soft Computing > Ausgabe 17/2020
Autoren:
Jiayu Liang, Jixiang Wen, Zhe Wang, Jianming Wang
Wichtige Hinweise
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Even though numerous segmentation methods exist, the requirement of prior knowledge or parameter tuning makes them restricted to limited image domains. Without predefining solution models, genetic programming (GP) is able to solve complex problems by evolving computer programs automatically. In this paper, three new GP-based methods are designed to evolve segmentation algorithms automatically from images and primitive image processing operators (e.g., filters and histogram equalization). Specifically, a strongly typed representation, the cooperative coevolution technique and a two-stage evolution are introduced in GP, respectively, to form three new methods that can evolve solutions to conduct image preprocessing, segmentation and postprocessing automatically. The new methods are termed as StronglyGP, CoevoGP and TwostageGP, and standard GP-based algorithm (StandardGP) is employed as a reference method. The proposed methods are tested on two complicated datasets (i.e., Weizmann and Pascal datasets), which contain high variations in both objects and backgrounds. The results show that StronglyGP and StandardGP can evolve effective segmentors for the given complex segmentation tasks, while CoevoGP and TwostageGP perform worse than StronglyGP and StandardGP, which may be caused by the overfitting problem in deriving postprocessing solutions. In addition, compared with StandardGP, StronglyGP achieves better segmentation performance with smaller solution sizes. Moreover, compared with four widely used segmentation methods, StronglyGP and StandardGP can produce satisfactory results consistently on both Weizmann and Pascal datasets.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 17/2020

Soft Computing 17/2020 Zur Ausgabe

Premium Partner

    Bildnachweise