Skip to main content
Erschienen in: Acta Mechanica 8/2019

23.05.2019 | Original Paper

Exact analysis based on BDLTNE approach for thermal behaviour in living tissues during regional hyperthermia therapy

verfasst von: Jaideep Dutta, Balaram Kundu

Erschienen in: Acta Mechanica | Ausgabe 8/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work highlights the attempt to develop a two-dimensional mathematical modelling of thermal characteristics in malignant tissues under a regional hyperthermia therapy based on the bi-dimensional local thermal non-equilibrium bioheat model. In the arena of biological heat transfer, a local thermal non-equilibrium model is preferred over a local thermal equilibrium approach, as skin tissues are a combination of highly non-uniform non-homogeneous structure of fluid and solid media (porous structure). The solution of the thermal response has been determined analytically by employing a ‘hybrid scheme’ composed of ‘shift of variables’ and ‘finite integral transform’ with the therapeutic boundary conditions and actual local coordinates dependent on the initial condition. The thermal behavioural study has been conducted with the influence of oscillating and constant heat flux imposed on the exposed surface of the diseased tissue. The results have been validated with the published experimental work. From the research output, it has been noticed that the sinusoidal therapeutic heat flux is better for the longer time of treatment in comparison with the constant heat flux heating. The treatment protocols of regional hyperthermia suggest that the size of the affected tissue (or organ) is larger in comparison with the localized hyperthermia. Hence, the multi-dimensional modelling should give better glimpse of results than the 1-D form of analysis. From the constructed 2-D thermal contours, it may be noted under the regional hyperthermia circumstance that the heat propagation in the living tissue is in two-directional nature, and thus 2-D analysis is necessary for predicting an accurate temperature response. The present analysis also highlights that a temperature range of 38–44 \(^\circ {\hbox {C}}\) is possible to maintain in a prolonged therapeutic exposure time instead of maintaining \(50\,^\circ {\hbox {C}}\) for 30 min described in the existing literature. Hence, this positive aspect obtained in the present work can avoid the collateral damage of healthy tissues in human bodies during the regional hyperthermia therapy.
Literatur
1.
Zurück zum Zitat van der Zee, J.: Heating the patient: a promising approach? Ann. Oncol. 13(8), 1173–1184 (2002)CrossRef van der Zee, J.: Heating the patient: a promising approach? Ann. Oncol. 13(8), 1173–1184 (2002)CrossRef
2.
Zurück zum Zitat Habash, R.W.Y., Bansal, R., Krewski, D., Alhafid, H.T.: Thermal therapy, part 2: hyperthermia techniques. Crit. Rev. Biomed. Eng. 34(6), 491–542 (2006)CrossRef Habash, R.W.Y., Bansal, R., Krewski, D., Alhafid, H.T.: Thermal therapy, part 2: hyperthermia techniques. Crit. Rev. Biomed. Eng. 34(6), 491–542 (2006)CrossRef
3.
Zurück zum Zitat Mallorya, M., Goginenib, E., Jonesc, G.C., Greerd, L., Simone II, C.B.: Therapeutic hyperthermia: the old, the new, and the upcoming. Crit. Rev. Oncol./Hematol. 97, 56–64 (2016)CrossRef Mallorya, M., Goginenib, E., Jonesc, G.C., Greerd, L., Simone II, C.B.: Therapeutic hyperthermia: the old, the new, and the upcoming. Crit. Rev. Oncol./Hematol. 97, 56–64 (2016)CrossRef
4.
Zurück zum Zitat Xu, F., Lu, T.J., Seffen, K.A., Ng, E.Y.K.: Mathematical modeling of skin bioheat transfer. Appl. Mech. Rev. 62, 50801–50835 (2009)CrossRef Xu, F., Lu, T.J., Seffen, K.A., Ng, E.Y.K.: Mathematical modeling of skin bioheat transfer. Appl. Mech. Rev. 62, 50801–50835 (2009)CrossRef
5.
Zurück zum Zitat Prasad, R., Kumar, R., Mukhopadhyay, S.: Effects of phase lags on wave propagation in an infinite solid due to a continuous line heat source. Acta Mech. 217, 243–256 (2010)CrossRefMATH Prasad, R., Kumar, R., Mukhopadhyay, S.: Effects of phase lags on wave propagation in an infinite solid due to a continuous line heat source. Acta Mech. 217, 243–256 (2010)CrossRefMATH
6.
Zurück zum Zitat Xuan, Y., Roetzel, W.: Bioheat transfer equation of human thermal system. Chem. Eng. Technol. 20, 268–276 (1997)CrossRef Xuan, Y., Roetzel, W.: Bioheat transfer equation of human thermal system. Chem. Eng. Technol. 20, 268–276 (1997)CrossRef
7.
Zurück zum Zitat Roetzel, W., Xuan, Y.: Transient response of human limb to an external stimulus. Int. J. Heat Mass Transf. 41(1), 229–239 (1998)CrossRefMATH Roetzel, W., Xuan, Y.: Transient response of human limb to an external stimulus. Int. J. Heat Mass Transf. 41(1), 229–239 (1998)CrossRefMATH
8.
Zurück zum Zitat Shivakumara, I.S., Ravisha, M., Ng, C.-O., Varun, V.L.: Porous ferroconvection with local thermal nonequilibrium temperatures and with Cattaneo effects in the solid. Acta Mech. 226, 3763–3779 (2015)MathSciNetCrossRefMATH Shivakumara, I.S., Ravisha, M., Ng, C.-O., Varun, V.L.: Porous ferroconvection with local thermal nonequilibrium temperatures and with Cattaneo effects in the solid. Acta Mech. 226, 3763–3779 (2015)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Alazmi, B., Vafai, K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transf. 44, 1735–1749 (2001)CrossRefMATH Alazmi, B., Vafai, K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transf. 44, 1735–1749 (2001)CrossRefMATH
10.
Zurück zum Zitat Khaled, A.-R.A., Vafai, K.: The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46, 4989–5003 (2003)CrossRefMATH Khaled, A.-R.A., Vafai, K.: The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46, 4989–5003 (2003)CrossRefMATH
11.
Zurück zum Zitat Nakayama, A., Kuwahara, F.: A general bioheat transfer model based on theory of porous media. Int. J. Heat Mass Transf. 51, 3190–3199 (2008)CrossRefMATH Nakayama, A., Kuwahara, F.: A general bioheat transfer model based on theory of porous media. Int. J. Heat Mass Transf. 51, 3190–3199 (2008)CrossRefMATH
12.
Zurück zum Zitat Mahjoob, S., Vafai, K.: Analytical characterization of heat transport through biological media incorporating hyperthermia treatment. Int. J. Heat Mass Transf. 52, 1608–1618 (2009)CrossRefMATH Mahjoob, S., Vafai, K.: Analytical characterization of heat transport through biological media incorporating hyperthermia treatment. Int. J. Heat Mass Transf. 52, 1608–1618 (2009)CrossRefMATH
13.
Zurück zum Zitat Yuan, P.: Numerical analysis of an equivalent heat transfer coefficient in a porous model for simulating a biological tissue in a hyperthermia therapy. Int. J. Heat Mass Transf. 52, 1734–1740 (2009)CrossRefMATH Yuan, P.: Numerical analysis of an equivalent heat transfer coefficient in a porous model for simulating a biological tissue in a hyperthermia therapy. Int. J. Heat Mass Transf. 52, 1734–1740 (2009)CrossRefMATH
14.
Zurück zum Zitat Zhang, Y.: Generalized dual-phase lag bioheat equations based on non-equilibrium heat transfer in living biological tissues. Int. J. Heat Mass Transf. 52, 4829–4834 (2009)CrossRefMATH Zhang, Y.: Generalized dual-phase lag bioheat equations based on non-equilibrium heat transfer in living biological tissues. Int. J. Heat Mass Transf. 52, 4829–4834 (2009)CrossRefMATH
15.
Zurück zum Zitat Afrin, N., Zhou, J., Zhang, Y., Tzou, D.Y., Chen, J.K.: Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model. Num. Heat Transf. A Appl. 61(7), 483–501 (2012)CrossRef Afrin, N., Zhou, J., Zhang, Y., Tzou, D.Y., Chen, J.K.: Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model. Num. Heat Transf. A Appl. 61(7), 483–501 (2012)CrossRef
16.
Zurück zum Zitat Yuan, P., Yang, C.-S., Liu, S.-F.: Temperature analysis of a biological tissue during hyperthermia therapy in the thermal non-equilibrium porous model. Int. J. Therm. Sci. 78, 124–131 (2014)CrossRef Yuan, P., Yang, C.-S., Liu, S.-F.: Temperature analysis of a biological tissue during hyperthermia therapy in the thermal non-equilibrium porous model. Int. J. Therm. Sci. 78, 124–131 (2014)CrossRef
17.
Zurück zum Zitat Liu, K.-C., Chen, H.-T.: Analysis of the bioheat transfer problem with pulse boundary heat flux using a generalized dual-phase-lag model. Int. Comm. Heat Mass Transf. 65, 31–36 (2015)CrossRef Liu, K.-C., Chen, H.-T.: Analysis of the bioheat transfer problem with pulse boundary heat flux using a generalized dual-phase-lag model. Int. Comm. Heat Mass Transf. 65, 31–36 (2015)CrossRef
18.
Zurück zum Zitat Hooshmand, P., Moradi, A., Khezry, B.: Bioheat transfer analysis of biological tissues induced by laser irradiation. Int. J. Therm. Sci. 90, 214–223 (2015)CrossRef Hooshmand, P., Moradi, A., Khezry, B.: Bioheat transfer analysis of biological tissues induced by laser irradiation. Int. J. Therm. Sci. 90, 214–223 (2015)CrossRef
19.
Zurück zum Zitat Jasiński, M., Majchrzak, E., Turchan, L.: Numerical analysis of the interactions between laser and soft tissues using generalized dual-phase lag equation. Appl. Math. Model. 40, 750–762 (2016)MathSciNetCrossRef Jasiński, M., Majchrzak, E., Turchan, L.: Numerical analysis of the interactions between laser and soft tissues using generalized dual-phase lag equation. Appl. Math. Model. 40, 750–762 (2016)MathSciNetCrossRef
20.
Zurück zum Zitat Liu, K.-C., Chen, Y.-S.: Analysis of heat transfer and burn damage in a laser irradiated living tissue with the generalized dual-phase-lag model. Int. J. Therm. Sci. 103, 1–9 (2016)CrossRef Liu, K.-C., Chen, Y.-S.: Analysis of heat transfer and burn damage in a laser irradiated living tissue with the generalized dual-phase-lag model. Int. J. Therm. Sci. 103, 1–9 (2016)CrossRef
21.
Zurück zum Zitat Monte, F.D., Haji-Sheikh, A.: Bio-heat diffusion under local thermal non-equilibrium conditions using dual-phase lag-based Green’s functions. Int. J. Heat Mass Transf. 113, 1291–1305 (2017)CrossRef Monte, F.D., Haji-Sheikh, A.: Bio-heat diffusion under local thermal non-equilibrium conditions using dual-phase lag-based Green’s functions. Int. J. Heat Mass Transf. 113, 1291–1305 (2017)CrossRef
22.
Zurück zum Zitat Xu, F., Lu, T.: Introduction to Skin Biothermomechanics and Thermal Pain. Science Press Beijing and Springer-Verlag, London, New York, Berlin, Heidelberg (2011)CrossRef Xu, F., Lu, T.: Introduction to Skin Biothermomechanics and Thermal Pain. Science Press Beijing and Springer-Verlag, London, New York, Berlin, Heidelberg (2011)CrossRef
23.
Zurück zum Zitat Dutta, J., Kundu, B.: A revised approach for an exact analytical solution for thermal response in biological tissues significant in therapeutic treatments. J. Therm. Biol. 66, 33–48 (2017)CrossRef Dutta, J., Kundu, B.: A revised approach for an exact analytical solution for thermal response in biological tissues significant in therapeutic treatments. J. Therm. Biol. 66, 33–48 (2017)CrossRef
24.
Zurück zum Zitat Dutta, J., Kundu, B.: Two-dimensional closed-form model for temperature in living tissues for hyperthermia treatments. J. Therm. Biol. 71, 41–51 (2018)CrossRef Dutta, J., Kundu, B.: Two-dimensional closed-form model for temperature in living tissues for hyperthermia treatments. J. Therm. Biol. 71, 41–51 (2018)CrossRef
25.
Zurück zum Zitat Dutta, J., Kundu, B.: Thermal wave propagation in blood perfused tissues under hyperthermia treatment for unique oscillatory heat flux at skin surface and appropriate initial condition. Heat Mass Transf. 54, 3199–3217 (2018)CrossRef Dutta, J., Kundu, B.: Thermal wave propagation in blood perfused tissues under hyperthermia treatment for unique oscillatory heat flux at skin surface and appropriate initial condition. Heat Mass Transf. 54, 3199–3217 (2018)CrossRef
26.
Zurück zum Zitat Minkowycz, W.J., Haji-Sheikh, A., Vafai, K.: On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number. Int. J. Heat Mass Transf. 42, 3373–3385 (1999)CrossRefMATH Minkowycz, W.J., Haji-Sheikh, A., Vafai, K.: On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number. Int. J. Heat Mass Transf. 42, 3373–3385 (1999)CrossRefMATH
27.
Zurück zum Zitat Kumar, S., Srivastava, A.: Finite integral transform-based analytical solutions of dual phase lag bio-heat transfer. Appl. Math. Model. 52, 378–403 (2017)MathSciNetCrossRef Kumar, S., Srivastava, A.: Finite integral transform-based analytical solutions of dual phase lag bio-heat transfer. Appl. Math. Model. 52, 378–403 (2017)MathSciNetCrossRef
28.
Zurück zum Zitat Li, R., Zhong, Y., Tian, B., Liu, Y.: On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates. Appl. Math. Lett. 22, 1821–1827 (2009)MathSciNetCrossRefMATH Li, R., Zhong, Y., Tian, B., Liu, Y.: On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates. Appl. Math. Lett. 22, 1821–1827 (2009)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Cotta, R.M., Cotta, B.P., Naveira-Cotta, C.P., Cotta-Pereira, G.: Hybrid integral transforms analysis of the bioheat equation with variable properties. Int. J. Therm. Sci. 49, 1510–1516 (2010)CrossRefMATH Cotta, R.M., Cotta, B.P., Naveira-Cotta, C.P., Cotta-Pereira, G.: Hybrid integral transforms analysis of the bioheat equation with variable properties. Int. J. Therm. Sci. 49, 1510–1516 (2010)CrossRefMATH
30.
31.
Zurück zum Zitat Kundu, B.: Exact analysis for propagation of heat in a biological tissue subject to different surface conditions for therapeutic applications. Appl. Math. Comput. 285, 204–216 (2016)MathSciNetMATH Kundu, B.: Exact analysis for propagation of heat in a biological tissue subject to different surface conditions for therapeutic applications. Appl. Math. Comput. 285, 204–216 (2016)MathSciNetMATH
32.
Zurück zum Zitat Arpaci, V.S.: Conduction Heat Transfer. Addison-Wesley, Boston (1996)MATH Arpaci, V.S.: Conduction Heat Transfer. Addison-Wesley, Boston (1996)MATH
34.
Zurück zum Zitat Ware, M.J., Nguyen, L.P., Law, J.J., Krzykawska-Serda, M., Taylor, K.M., Cao, H.S.T., Anderson, A.O., Pulikkathara, M., Newton, J.M., Ho, J.C., Hwang, R., Rajapakshe, K., Coarfa, C., Huang, S., Edwards, D., Curley, S.A., Corr, S.J.: A new mild hyperthermia device to treat vascular involvement in cancer surgery. Sci. Rep. (Nature) (2017). https://doi.org/10.1038/s41598-017-10508-6 Ware, M.J., Nguyen, L.P., Law, J.J., Krzykawska-Serda, M., Taylor, K.M., Cao, H.S.T., Anderson, A.O., Pulikkathara, M., Newton, J.M., Ho, J.C., Hwang, R., Rajapakshe, K., Coarfa, C., Huang, S., Edwards, D., Curley, S.A., Corr, S.J.: A new mild hyperthermia device to treat vascular involvement in cancer surgery. Sci. Rep. (Nature) (2017). https://​doi.​org/​10.​1038/​s41598-017-10508-6
Metadaten
Titel
Exact analysis based on BDLTNE approach for thermal behaviour in living tissues during regional hyperthermia therapy
verfasst von
Jaideep Dutta
Balaram Kundu
Publikationsdatum
23.05.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 8/2019
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02427-6

Weitere Artikel der Ausgabe 8/2019

Acta Mechanica 8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.