Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2019

17.04.2019

Exact, approximate and asymptotic solutions of the Klein–Gordon integral equation

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Interaction of the highly localized probe of scanning probe microscopy with solid surfaces with mobile electronic or ionic carriers leads to the redistribution of mobile carriers at the tip surface junction. For small probe biases, this problem is equivalent to the Debye screening, described by Klein–Gordon (K–G) integral equation. Here, an exact solution to the K–G equation is derived for the case of a circle in the form of a convergent series expansion of the solution, which is effective for relatively small values of the inverse Debye length, k. Also, a reasonably accurate solution is derived for large values of parameter k by using the method of collocation. A surprisingly simple asymptotic solution is derived for very large values of k, which is valid for the arbitrary right-hand side of the equation. The same methods can be used for the case of elliptic domain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933CrossRef Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933CrossRef
2.
Zurück zum Zitat Binnig G, Rohrer H, Gerber C, Weibel E (1983) \(7\times 7\) reconstruction on Si (111) resolved in real space. Phys Rev Lett 50(2):120–123CrossRef Binnig G, Rohrer H, Gerber C, Weibel E (1983) \(7\times 7\) reconstruction on Si (111) resolved in real space. Phys Rev Lett 50(2):120–123CrossRef
3.
Zurück zum Zitat Gerber C, Lang HP (2006) How the doors to the nanoworld were opened. Nat Nanotechnol 1(1):3–5CrossRef Gerber C, Lang HP (2006) How the doors to the nanoworld were opened. Nat Nanotechnol 1(1):3–5CrossRef
4.
Zurück zum Zitat Alvarez T, Kalinin SV, Bonnell DA (2001) Magnetic-field measurements of current-carrying devices by force-sensitive magnetic-force microscopy with potential correction. Appl Phys Lett 78(7):1005–1007CrossRef Alvarez T, Kalinin SV, Bonnell DA (2001) Magnetic-field measurements of current-carrying devices by force-sensitive magnetic-force microscopy with potential correction. Appl Phys Lett 78(7):1005–1007CrossRef
5.
Zurück zum Zitat Grutter P, Liu Y, LeBlanc P, Durig U (1997) Magnetic dissipation force microscopy. Appl Phys Lett 71(2):279–281CrossRef Grutter P, Liu Y, LeBlanc P, Durig U (1997) Magnetic dissipation force microscopy. Appl Phys Lett 71(2):279–281CrossRef
6.
Zurück zum Zitat Albrecht TR, Grutter P, Horne D, Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69(2):668–673CrossRef Albrecht TR, Grutter P, Horne D, Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69(2):668–673CrossRef
7.
Zurück zum Zitat Martin Y, Wickramasinghe HK (1987) Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl Phys Lett 50(20):1455–1457CrossRef Martin Y, Wickramasinghe HK (1987) Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl Phys Lett 50(20):1455–1457CrossRef
8.
Zurück zum Zitat Fujihira M (1999) Kelvin probe force microscopy of molecular surfaces. Annu Rev Mater Sci 29:353–380CrossRef Fujihira M (1999) Kelvin probe force microscopy of molecular surfaces. Annu Rev Mater Sci 29:353–380CrossRef
9.
Zurück zum Zitat Sommerhalter C, Matthes TW, Glatzel T, Jager-Waldau A, Lux-Steiner MC (1999) High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy. Appl Phys Lett 75(2):286–288CrossRef Sommerhalter C, Matthes TW, Glatzel T, Jager-Waldau A, Lux-Steiner MC (1999) High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy. Appl Phys Lett 75(2):286–288CrossRef
10.
Zurück zum Zitat Kitamura S, Iwatsuki M (1998) High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope. Appl Phys Lett 72(24):3154–3156CrossRef Kitamura S, Iwatsuki M (1998) High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope. Appl Phys Lett 72(24):3154–3156CrossRef
11.
Zurück zum Zitat Tanimoto M, Vatel O (1996) Kelvin probe force microscopy for characterization of semiconductor devices and processes. J Vac Sci Technol B 14(2):1547–1551CrossRef Tanimoto M, Vatel O (1996) Kelvin probe force microscopy for characterization of semiconductor devices and processes. J Vac Sci Technol B 14(2):1547–1551CrossRef
12.
Zurück zum Zitat Vatel O, Tanimoto M (1995) Kelvin probe force microscopy for potential distribution measurement of semiconductor devices. J Appl Phys 77(6):2358–2362CrossRef Vatel O, Tanimoto M (1995) Kelvin probe force microscopy for potential distribution measurement of semiconductor devices. J Appl Phys 77(6):2358–2362CrossRef
13.
Zurück zum Zitat Nonnenmacher M, Oboyle MP, Wickramasinghe HK (1991) Kelvin probe force microscopy. Appl Phys Lett 58(25):2921–2923CrossRef Nonnenmacher M, Oboyle MP, Wickramasinghe HK (1991) Kelvin probe force microscopy. Appl Phys Lett 58(25):2921–2923CrossRef
14.
Zurück zum Zitat Guo SL, Kalinin SV, Jesse S (2012) Open-loop band excitation Kelvin probe force microscopy. Nanotechnology 23(12):125704CrossRef Guo SL, Kalinin SV, Jesse S (2012) Open-loop band excitation Kelvin probe force microscopy. Nanotechnology 23(12):125704CrossRef
15.
Zurück zum Zitat Guo SL, Kalinin SV, Jesse S (2012) Half-harmonic Kelvin probe force microscopy with transfer function correction. Appl Phys Lett 100(6):063118CrossRef Guo SL, Kalinin SV, Jesse S (2012) Half-harmonic Kelvin probe force microscopy with transfer function correction. Appl Phys Lett 100(6):063118CrossRef
16.
Zurück zum Zitat Sadewasser ES, Glatzel T (2011) Kelvin probe force microscopy. Springer, New York Sadewasser ES, Glatzel T (2011) Kelvin probe force microscopy. Springer, New York
17.
Zurück zum Zitat Hurley DC, Shen K, Jennett NM, Turner JA (2003) Atomic force acoustic microscopy methods to determine thin-film elastic properties. J Appl Phys 94(4):2347–2354CrossRef Hurley DC, Shen K, Jennett NM, Turner JA (2003) Atomic force acoustic microscopy methods to determine thin-film elastic properties. J Appl Phys 94(4):2347–2354CrossRef
18.
Zurück zum Zitat Rabe U, Kopycinska M, Hirsekorn S, Saldana JM, Schneider GA, Arnold W (2002) High-resolution characterization of piezoelectric ceramics by ultrasonic scanning force microscopy techniques. J Phys D 35(20):2621–2635CrossRef Rabe U, Kopycinska M, Hirsekorn S, Saldana JM, Schneider GA, Arnold W (2002) High-resolution characterization of piezoelectric ceramics by ultrasonic scanning force microscopy techniques. J Phys D 35(20):2621–2635CrossRef
19.
Zurück zum Zitat Liu XX, Heiderhoff R, Abicht HP, Balk LJ (2002) Scanning near-field acoustic study of ferroelectric BaTiO3 ceramics. J Phys D 35(1):74–87CrossRef Liu XX, Heiderhoff R, Abicht HP, Balk LJ (2002) Scanning near-field acoustic study of ferroelectric BaTiO3 ceramics. J Phys D 35(1):74–87CrossRef
20.
Zurück zum Zitat Drobek T, Stark RW, Heckl WM (2001) Determination of shear stiffness based on thermal noise analysis in atomic force microscopy: passive overtone microscopy. Phys Rev B 64(4):045401CrossRef Drobek T, Stark RW, Heckl WM (2001) Determination of shear stiffness based on thermal noise analysis in atomic force microscopy: passive overtone microscopy. Phys Rev B 64(4):045401CrossRef
21.
Zurück zum Zitat Rabe U, Arnold W (1994) Acoustic microscopy by atomic force microscopy. Appl Phys Lett 64(12):1493–1495CrossRef Rabe U, Arnold W (1994) Acoustic microscopy by atomic force microscopy. Appl Phys Lett 64(12):1493–1495CrossRef
22.
Zurück zum Zitat Kalinin SV, Morozovska AN, Chen LQ, Rodriguez BJ (2010) Local polarization dynamics in ferroelectric materials. Rep Progr Phys 73(5):056502CrossRef Kalinin SV, Morozovska AN, Chen LQ, Rodriguez BJ (2010) Local polarization dynamics in ferroelectric materials. Rep Progr Phys 73(5):056502CrossRef
23.
Zurück zum Zitat Kalinin SV, Bonnell DA (2002) Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys Rev B 65(12):125408CrossRef Kalinin SV, Bonnell DA (2002) Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys Rev B 65(12):125408CrossRef
24.
Zurück zum Zitat Chen XQ, Yamada H, Horiuchi T, Matsushige K (1999) Investigation of surface potential of ferroelectric organic molecules by scanning probe microscopy. Jpn J Appl Phys Part 1 38(6B):3932–3935CrossRef Chen XQ, Yamada H, Horiuchi T, Matsushige K (1999) Investigation of surface potential of ferroelectric organic molecules by scanning probe microscopy. Jpn J Appl Phys Part 1 38(6B):3932–3935CrossRef
25.
Zurück zum Zitat Gruverman AL, Hatano J, Tokumoto H (1997) Scanning force microscopy studies of domain structure in BaTiO3 single crystals. Jpn J Appl Phys Part 1 36(4A):2207–2211CrossRef Gruverman AL, Hatano J, Tokumoto H (1997) Scanning force microscopy studies of domain structure in BaTiO3 single crystals. Jpn J Appl Phys Part 1 36(4A):2207–2211CrossRef
26.
Zurück zum Zitat Kalinin SV, Rar A, Jesse S (2006) A decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE Trans Ultrason Ferroelectr Freq Control 53(12):2226–2252CrossRef Kalinin SV, Rar A, Jesse S (2006) A decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE Trans Ultrason Ferroelectr Freq Control 53(12):2226–2252CrossRef
27.
Zurück zum Zitat Kalinin SV, Jesse S, Rodriguez BJ, Seal K, Baddorf AP, Zhao T, Chu YH, Ramesh R, Eliseev EA, Morozovska AN, Mirman B, Karapetian E (2007) Recent advances in electromechanical imaging on the nanometer scale: polarization dynamics in ferroelectrics, biopolymers, and liquid imaging. Jpn J Appl Phys Part 1 46(9A):5674–5685CrossRef Kalinin SV, Jesse S, Rodriguez BJ, Seal K, Baddorf AP, Zhao T, Chu YH, Ramesh R, Eliseev EA, Morozovska AN, Mirman B, Karapetian E (2007) Recent advances in electromechanical imaging on the nanometer scale: polarization dynamics in ferroelectrics, biopolymers, and liquid imaging. Jpn J Appl Phys Part 1 46(9A):5674–5685CrossRef
28.
Zurück zum Zitat Gruverman A, Kalinin SV (2006) Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. J Mater Sci 41(1):107–116CrossRef Gruverman A, Kalinin SV (2006) Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. J Mater Sci 41(1):107–116CrossRef
29.
Zurück zum Zitat Balke N, Bdikin I, Kalinin SV, Kholkin AL (2009) Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J Am Ceram Soc 92(8):1629–1647CrossRef Balke N, Bdikin I, Kalinin SV, Kholkin AL (2009) Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J Am Ceram Soc 92(8):1629–1647CrossRef
30.
Zurück zum Zitat O’Hayre R, Lee M, Prinz FB (2004) Ionic and electronic impedance imaging using atomic force microscopy. J Appl Phys 95(12):8382–8392CrossRef O’Hayre R, Lee M, Prinz FB (2004) Ionic and electronic impedance imaging using atomic force microscopy. J Appl Phys 95(12):8382–8392CrossRef
31.
Zurück zum Zitat Shao R, Kalinin SV, Bonnell DA (2003) Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy. Appl Phys Lett 82(12):1869–1871CrossRef Shao R, Kalinin SV, Bonnell DA (2003) Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy. Appl Phys Lett 82(12):1869–1871CrossRef
32.
Zurück zum Zitat Pingree LSC, Martin EF, Shull KR, Hersam MC (2005) Nanoscale impedance microscopy—a characterization tool for nanoelectronic devices and circuits. IEEE Trans Nanotechnol 4(2):255–259CrossRef Pingree LSC, Martin EF, Shull KR, Hersam MC (2005) Nanoscale impedance microscopy—a characterization tool for nanoelectronic devices and circuits. IEEE Trans Nanotechnol 4(2):255–259CrossRef
33.
Zurück zum Zitat Garcia R, Knoll AW, Riedo E (2014) Advanced scanning probe lithography. Nat Nanotechnol 9(8):577–587CrossRef Garcia R, Knoll AW, Riedo E (2014) Advanced scanning probe lithography. Nat Nanotechnol 9(8):577–587CrossRef
34.
Zurück zum Zitat Garcia R, Calleja M, Perez-Murano F (1998) Local oxidation of silicon surfaces by dynamic force microscopy: nanofabrication and water bridge formation. Appl Phys Lett 72(18):2295–2297CrossRef Garcia R, Calleja M, Perez-Murano F (1998) Local oxidation of silicon surfaces by dynamic force microscopy: nanofabrication and water bridge formation. Appl Phys Lett 72(18):2295–2297CrossRef
35.
Zurück zum Zitat Garcia R, Martinez RV, Martinez J (2006) Nano-chemistry and scanning probe nanolithographies. Chem Soc Rev 35(1):29–38CrossRef Garcia R, Martinez RV, Martinez J (2006) Nano-chemistry and scanning probe nanolithographies. Chem Soc Rev 35(1):29–38CrossRef
36.
Zurück zum Zitat Lee W, Lee M, Kim YB, Prinz FB (2009) Reduction and oxidation of oxide ion conductors with conductive atomic force microscopy. Nanotechnology 20(44):445706CrossRef Lee W, Lee M, Kim YB, Prinz FB (2009) Reduction and oxidation of oxide ion conductors with conductive atomic force microscopy. Nanotechnology 20(44):445706CrossRef
37.
Zurück zum Zitat Arruda TM, Kumar A, Kalinin SV, Jesse S (2011) Mapping irreversible electrochemical processes on the nanoscale: ionic phenomena in Li ion conductive glass ceramics. Nano Lett 11(10):4161–4167CrossRef Arruda TM, Kumar A, Kalinin SV, Jesse S (2011) Mapping irreversible electrochemical processes on the nanoscale: ionic phenomena in Li ion conductive glass ceramics. Nano Lett 11(10):4161–4167CrossRef
38.
Zurück zum Zitat Arruda TM, Kumar A, Kalinin SV, Jesse S (2012) The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries. Nanotechnology 23(32):325402CrossRef Arruda TM, Kumar A, Kalinin SV, Jesse S (2012) The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries. Nanotechnology 23(32):325402CrossRef
39.
Zurück zum Zitat Lee M, O’Hayre R, Prinz FB, Gur TM (2004) Electrochemical nanopatterning of Ag on solid-state ionic conductor Rb Ag4 I5 using atomic force microscopy. Appl Phys Lett 85(16):3552–3554CrossRef Lee M, O’Hayre R, Prinz FB, Gur TM (2004) Electrochemical nanopatterning of Ag on solid-state ionic conductor Rb Ag4 I5 using atomic force microscopy. Appl Phys Lett 85(16):3552–3554CrossRef
40.
Zurück zum Zitat Bao W, Melli M, Caselli N, Riboli F, Wiersma DS, Staffaroni M, Choo H, Ogletree DF, Aloni S, Bokor J, Cabrini S, Intonti F, Salmeron MB, Yablonovitch E, Schuck PJ, Weber-Bargioni A (2012) Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 338(6112):1317–1321CrossRef Bao W, Melli M, Caselli N, Riboli F, Wiersma DS, Staffaroni M, Choo H, Ogletree DF, Aloni S, Bokor J, Cabrini S, Intonti F, Salmeron MB, Yablonovitch E, Schuck PJ, Weber-Bargioni A (2012) Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 338(6112):1317–1321CrossRef
41.
Zurück zum Zitat Fabrikant VI (1989) Applications of potential theory in mechanics. Kluwer Academic Publishers, DordrechtMATH Fabrikant VI (1989) Applications of potential theory in mechanics. Kluwer Academic Publishers, DordrechtMATH
42.
Zurück zum Zitat Fabrikant VI (1991) Mixed boundary value problems of potential theory and their applications in engineering. Kluwer Academic Publishers, DordrechtMATH Fabrikant VI (1991) Mixed boundary value problems of potential theory and their applications in engineering. Kluwer Academic Publishers, DordrechtMATH
43.
Zurück zum Zitat Fabrikant VI (2010) Contact and crack problems in linear theory of elasticity. Bentham Science Publishers, Sharjah Fabrikant VI (2010) Contact and crack problems in linear theory of elasticity. Bentham Science Publishers, Sharjah
44.
Zurück zum Zitat Kalinin SV, Karapetian E, Kachanov M (2004) Nanoelectromechanics of piezoresponse force microscopy. Phys Rev B 70(18):184101CrossRef Kalinin SV, Karapetian E, Kachanov M (2004) Nanoelectromechanics of piezoresponse force microscopy. Phys Rev B 70(18):184101CrossRef
45.
Zurück zum Zitat Kalinin SV, Shin J, Kachanov M, Karapetian E, Baddorf AP (2004) Nanoelectromechanics of Piezoresponse Force Microscopy: contact properties, fields below the surface and polarization switching. In: Hoffmann-Eifert S, Funakubo H, Joshi V, Kingon AI, Koutsaroff IP (eds) Ferroelectric Thin Films Xii, vol 784, pp 43–48 Kalinin SV, Shin J, Kachanov M, Karapetian E, Baddorf AP (2004) Nanoelectromechanics of Piezoresponse Force Microscopy: contact properties, fields below the surface and polarization switching. In: Hoffmann-Eifert S, Funakubo H, Joshi V, Kingon AI, Koutsaroff IP (eds) Ferroelectric Thin Films Xii, vol 784, pp 43–48
46.
Zurück zum Zitat Kalinin SV, Mirman B, Karapetian E (2007) Relationship between direct and converse piezoelectric effect in a nanoscale electromechanical contact. Phys Rev B 76(21):212102CrossRef Kalinin SV, Mirman B, Karapetian E (2007) Relationship between direct and converse piezoelectric effect in a nanoscale electromechanical contact. Phys Rev B 76(21):212102CrossRef
47.
Zurück zum Zitat Makagon A, Kachanov M, Kalinin SV, Karapetian E (2007) Indentation of spherical and conical punches into piezoelectric half-space with frictional sliding: applications to scanning probe microscopy. Phys Rev B 76(6):064115CrossRef Makagon A, Kachanov M, Kalinin SV, Karapetian E (2007) Indentation of spherical and conical punches into piezoelectric half-space with frictional sliding: applications to scanning probe microscopy. Phys Rev B 76(6):064115CrossRef
48.
Zurück zum Zitat Karapetian E, Kalinin SV (2011) Point force and generalized point source on the surface of semi-infinite transversely isotropic material. J Appl Phys 110(5):05220CrossRef Karapetian E, Kalinin SV (2011) Point force and generalized point source on the surface of semi-infinite transversely isotropic material. J Appl Phys 110(5):05220CrossRef
49.
Zurück zum Zitat Makagon A, Kachanov M, Karapetian E, Kalinin SV (2009) Piezoelectric indentation of a flat circular punch accompanied by frictional sliding and applications to scanning probe microscopy. Int J Eng Sci 47(2):221–239CrossRef Makagon A, Kachanov M, Karapetian E, Kalinin SV (2009) Piezoelectric indentation of a flat circular punch accompanied by frictional sliding and applications to scanning probe microscopy. Int J Eng Sci 47(2):221–239CrossRef
50.
Zurück zum Zitat Karapetian E, Kachanov M, Kalinin SV (2009) Stiffness relations for piezoelectric indentation of flat and non-flat punches of arbitrary planform: applications to probing nanoelectromechanical properties of materials. J Mech Phys Solids 57(4):673–688MathSciNetMATHCrossRef Karapetian E, Kachanov M, Kalinin SV (2009) Stiffness relations for piezoelectric indentation of flat and non-flat punches of arbitrary planform: applications to probing nanoelectromechanical properties of materials. J Mech Phys Solids 57(4):673–688MathSciNetMATHCrossRef
51.
Zurück zum Zitat Chen WQ, Ding HJ (2004) Potential theory method for 3D crack and contact problems of multi-field coupled media: a survey. J Zhejiang Univ Sci 5:1009–1021CrossRef Chen WQ, Ding HJ (2004) Potential theory method for 3D crack and contact problems of multi-field coupled media: a survey. J Zhejiang Univ Sci 5:1009–1021CrossRef
52.
Zurück zum Zitat Chen WQ (2000) On piezoelastic contact problem for a smooth punch. Int J Solids Struct 37:2331–2340MATHCrossRef Chen WQ (2000) On piezoelastic contact problem for a smooth punch. Int J Solids Struct 37:2331–2340MATHCrossRef
53.
Zurück zum Zitat Chen WQ, Pan EN, Wang HM, Zhang CZ (2010) Theory of indentation on multiferroic composite materials. J Mech Phys Solids 58:1524–1551MathSciNetMATHCrossRef Chen WQ, Pan EN, Wang HM, Zhang CZ (2010) Theory of indentation on multiferroic composite materials. J Mech Phys Solids 58:1524–1551MathSciNetMATHCrossRef
54.
Zurück zum Zitat Li XY, Wu F, Jin X, Chen WQ (2015) 3D coupled field in a transversely isotropic magneto-electro-elastic half space punched by an elliptic indenter. Mech Phys Solids 75:1–44MathSciNetMATHCrossRef Li XY, Wu F, Jin X, Chen WQ (2015) 3D coupled field in a transversely isotropic magneto-electro-elastic half space punched by an elliptic indenter. Mech Phys Solids 75:1–44MathSciNetMATHCrossRef
55.
Zurück zum Zitat Karapetian E, Kalinin SV (2013) Indentation of a punch with chemical or heat distribution at its base into transversely isotropic half-space: application to local thermal and electrochemical probes. J Appl Phys 113:187201CrossRef Karapetian E, Kalinin SV (2013) Indentation of a punch with chemical or heat distribution at its base into transversely isotropic half-space: application to local thermal and electrochemical probes. J Appl Phys 113:187201CrossRef
56.
Zurück zum Zitat Yang J, Jin XY (2014) Indentation of a flat circular punch with uniform heat flux at its base into transversely isotropic magneto-electro-thermo-elastic half space. J Appl Phys 115:083516CrossRef Yang J, Jin XY (2014) Indentation of a flat circular punch with uniform heat flux at its base into transversely isotropic magneto-electro-thermo-elastic half space. J Appl Phys 115:083516CrossRef
57.
Zurück zum Zitat Berndt EA, Sevostianov I (2016) Action of a smooth flat charged punch on the piezoelectric half-space possessing symmetry of class 6. Int J Eng Sci 103:77–96MathSciNetMATHCrossRef Berndt EA, Sevostianov I (2016) Action of a smooth flat charged punch on the piezoelectric half-space possessing symmetry of class 6. Int J Eng Sci 103:77–96MathSciNetMATHCrossRef
Metadaten
Titel
Exact, approximate and asymptotic solutions of the Klein–Gordon integral equation
Publikationsdatum
17.04.2019
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2019
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-019-09996-4

Weitere Artikel der Ausgabe 1/2019

Journal of Engineering Mathematics 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.