Skip to main content
Erschienen in: Theory of Computing Systems 1/2022

21.07.2021

Exact Multi-Covering Problems with Geometric Sets

verfasst von: Pradeesha Ashok, Sudeshna Kolay, Neeldhara Misra, Saket Saurabh

Erschienen in: Theory of Computing Systems | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The b-Exact Multicover problem takes a universe U of n elements, a family \(\mathcal {F}\) of m subsets of U, a function \({\textsf {dem}}: U \rightarrow \{1,\ldots ,b\}\) and a positive integer k, and decides whether there exists a subfamily(set cover) \(\mathcal {F}^{\prime }\) of size at most k such that each element uU is covered by exactly dem(u) sets of \(\mathcal {F}^{\prime }\). The b-Exact Coverage problem also takes the same input and decides whether there is a subfamily \(\mathcal {F}^{\prime } \subseteq \mathcal {F}\) such that there are at least k elements that satisfy the following property: uU is covered by exactly dem(u) sets of \(\mathcal {F}^{\prime }\). Both these problems are known to be NP-complete. In the parameterized setting, when parameterized by k, b-Exact Multicover is W[1]-hard even when b = 1. While b-Exact Coverage is FPT under the same parameter, it is known to not admit a polynomial kernel under standard complexity-theoretic assumptions, even when b = 1. In this paper, we investigate these two problems under the assumption that every set satisfies a given geometric property π. Specifically, we consider the universe to be a set of n points in a real space \(\mathbb {R}^{d}\), d being a positive integer. When d = 2 we consider the problem when π requires all sets to be unit squares or lines. When d > 2, we consider the problem where π requires all sets to be hyperplanes in \(\mathbb {R}^{d}\). These special versions of the problems are also known to be NP-complete. When parameterized by k, the b-Exact Coverage problem has a polynomial size kernel for all the above geometric versions. The b-Exact Multicover problem turns out to be W[1]-hard for squares even when b = 1, but FPT for lines and hyperplanes. Further, we also consider the b-Exact Max. Multicover problem, which takes the same input and decides whether there is a set cover \(\mathcal {F}^{\prime }\) such that every element uU is covered by at least dem(u) sets and at least k elements satisfy the following property: uU is covered by exactly dem(u) sets of \(\mathcal {F}^{\prime }\). To the best of our knowledge, this problem has not been studied before, and we show that it is NP-complete (even for the case of lines). In fact, the problem turns out to be W[1]-hard in the general setting, when parameterized by k. However, when we restrict the sets to lines and hyperplanes, we obtain FPT algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ashok, P., Kolay, S., Misra, N., Saurabh, S.: Unique covering problems with geometric sets International Computing and Combinatorics Conference, pp. 548–558. Springer (2015) Ashok, P., Kolay, S., Misra, N., Saurabh, S.: Unique covering problems with geometric sets International Computing and Combinatorics Conference, pp. 548–558. Springer (2015)
2.
Zurück zum Zitat Ashok, P., Roy, A.B., Govindarajan, S.: Local search strikes again: Ptas for variants of geometric covering and packing. J. Comb. Optim. 39(2), 618–635 (2020)MathSciNetCrossRef Ashok, P., Roy, A.B., Govindarajan, S.: Local search strikes again: Ptas for variants of geometric covering and packing. J. Comb. Optim. 39(2), 618–635 (2020)MathSciNetCrossRef
3.
Zurück zum Zitat Bansal, N., Pruhs, K.: Weighted geometric set multi-cover via quasi-uniform sampling. In: European Symposium on Algorithms, pages 145–156. Springer (2012) Bansal, N., Pruhs, K.: Weighted geometric set multi-cover via quasi-uniform sampling. In: European Symposium on Algorithms, pages 145–156. Springer (2012)
4.
Zurück zum Zitat Chekuri, C., Clarkson, K.L., Har-Peled, S.: On the set multicover problem in geometric settings. ACM Trans. Algorithms (TALG) 9(1), 1–17 (2012)MathSciNetCrossRef Chekuri, C., Clarkson, K.L., Har-Peled, S.: On the set multicover problem in geometric settings. ACM Trans. Algorithms (TALG) 9(1), 1–17 (2012)MathSciNetCrossRef
5.
Zurück zum Zitat Demaine, E.D., Feige, U., Hajiaghayi, M.-T., Salavatipour, M.R.: Combination can be hard: Approximability of the unique coverage problem. SIAM J. Comput. 38(4), 1464–1483 (2008)MathSciNetCrossRef Demaine, E.D., Feige, U., Hajiaghayi, M.-T., Salavatipour, M.R.: Combination can be hard: Approximability of the unique coverage problem. SIAM J. Comput. 38(4), 1464–1483 (2008)MathSciNetCrossRef
6.
Zurück zum Zitat Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors and ids. ACM Trans. Algorithms 11(2), 13:1–13:20 (2014)MathSciNetCrossRef Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors and ids. ACM Trans. Algorithms 11(2), 13:1–13:20 (2014)MathSciNetCrossRef
7.
Zurück zum Zitat Downey, R.G., Fellows, M.R.: Parameterized Complexity, p 530. Springer, Berlin (1999)CrossRef Downey, R.G., Fellows, M.R.: Parameterized Complexity, p 530. Springer, Berlin (1999)CrossRef
8.
Zurück zum Zitat Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)MathSciNetCrossRef Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)MathSciNetCrossRef
9.
Zurück zum Zitat Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus (2006) Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus (2006)
10.
Zurück zum Zitat Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are np-complete. Inf Process. Lett. 12(3), 133–137 (1981)MathSciNetCrossRef Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are np-complete. Inf Process. Lett. 12(3), 133–137 (1981)MathSciNetCrossRef
11.
Zurück zum Zitat Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete problems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC ’74, pp. 47–63. New York, NY. ACM, USA (1974) Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete problems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC ’74, pp. 47–63. New York, NY. ACM, USA (1974)
12.
Zurück zum Zitat Hall, N.G, Hochbaum, D.S: A fast approximation algorithm for the multicovering problem. Discret. Appl. Math. 15(1), 35–40 (1986)MathSciNetCrossRef Hall, N.G, Hochbaum, D.S: A fast approximation algorithm for the multicovering problem. Discret. Appl. Math. 15(1), 35–40 (1986)MathSciNetCrossRef
13.
Zurück zum Zitat Hall, N.G, Hochbaum, D.S: The multicovering problem. Eur. J. Oper. Res. 62(3), 323–339 (1992)CrossRef Hall, N.G, Hochbaum, D.S: The multicovering problem. Eur. J. Oper. Res. 62(3), 323–339 (1992)CrossRef
14.
Zurück zum Zitat Hochbaum, D.S, Maass, W.: Fast approximation algorithms for a nonconvex covering problem. J. Algorithms 8(3), 305–323 (1987)MathSciNetCrossRef Hochbaum, D.S, Maass, W.: Fast approximation algorithms for a nonconvex covering problem. J. Algorithms 8(3), 305–323 (1987)MathSciNetCrossRef
15.
Zurück zum Zitat Ito, T., Nakano, Shin-ichi, Okamoto, Y., Otachi, Y., Uehara, R., Uno, T., Uno, Y.: A polynomial-time approximation scheme for the geometric unique coverage problem on unit squares. Comput. Geom. 51, 25–39 (2016)MathSciNetCrossRef Ito, T., Nakano, Shin-ichi, Okamoto, Y., Otachi, Y., Uehara, R., Uno, T., Uno, Y.: A polynomial-time approximation scheme for the geometric unique coverage problem on unit squares. Comput. Geom. 51, 25–39 (2016)MathSciNetCrossRef
16.
Zurück zum Zitat Karp, R.M.: Reducibility among combinatorial problems. Complex. Comput. Comput., 85–103 (1972) Karp, R.M.: Reducibility among combinatorial problems. Complex. Comput. Comput., 85–103 (1972)
17.
Zurück zum Zitat Anil Kumar, V.S., Arya, S., Ramesh, H.: Hardness of set cover with intersection 1. In: International Colloquium on Automata, Languages, and Programming, pp. 624–635. Springer (2000) Anil Kumar, V.S., Arya, S., Ramesh, H.: Hardness of set cover with intersection 1. In: International Colloquium on Automata, Languages, and Programming, pp. 624–635. Springer (2000)
18.
19.
Zurück zum Zitat Marx, D.: Efficient approximation schemes for geometric problems?. In: ESA, pp 448–459. Springer (2005) Marx, D.: Efficient approximation schemes for geometric problems?. In: ESA, pp 448–459. Springer (2005)
20.
Zurück zum Zitat Marx, D.: Parameterized complexity of independence and domination on geometric graphs. In: Parameterized and Exact Computation, Second International Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Proceedings, pp. 154–165 (2006) Marx, D.: Parameterized complexity of independence and domination on geometric graphs. In: Parameterized and Exact Computation, Second International Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Proceedings, pp. 154–165 (2006)
21.
Zurück zum Zitat Matoušek, J.: Lectures on discrete geometry, vol. 108. Springer, New York (2002)CrossRef Matoušek, J.: Lectures on discrete geometry, vol. 108. Springer, New York (2002)CrossRef
22.
Zurück zum Zitat Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane. Oper. Res. Lett. 1(5), 194–197 (1982)MathSciNetCrossRef Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane. Oper. Res. Lett. 1(5), 194–197 (1982)MathSciNetCrossRef
23.
Zurück zum Zitat Misra, N., Moser, H., Raman, V., Saurabh, S., Sikdar, S.: The parameterized complexity of unique coverage and its variants. Algorithmica, 517–544 (2013) Misra, N., Moser, H., Raman, V., Saurabh, S., Sikdar, S.: The parameterized complexity of unique coverage and its variants. Algorithmica, 517–544 (2013)
24.
Zurück zum Zitat Mustafa, N., Ray, S.: Ptas for geometric hitting set problems via local search. In: Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 17–22. ACM (2009) Mustafa, N., Ray, S.: Ptas for geometric hitting set problems via local search. In: Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 17–22. ACM (2009)
25.
Zurück zum Zitat Peleg, D., Schechtman, G., Wool, A.: Randomized approximation of bounded multicovering problems. Algorithmica 18(1), 44–66 (1997)MathSciNetCrossRef Peleg, D., Schechtman, G., Wool, A.: Randomized approximation of bounded multicovering problems. Algorithmica 18(1), 44–66 (1997)MathSciNetCrossRef
26.
Zurück zum Zitat Vapnik, V.N, Ya Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16(2), 264–280 (1971)CrossRef Vapnik, V.N, Ya Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16(2), 264–280 (1971)CrossRef
Metadaten
Titel
Exact Multi-Covering Problems with Geometric Sets
verfasst von
Pradeesha Ashok
Sudeshna Kolay
Neeldhara Misra
Saket Saurabh
Publikationsdatum
21.07.2021
Verlag
Springer US
Erschienen in
Theory of Computing Systems / Ausgabe 1/2022
Print ISSN: 1432-4350
Elektronische ISSN: 1433-0490
DOI
https://doi.org/10.1007/s00224-021-10050-z

Weitere Artikel der Ausgabe 1/2022

Theory of Computing Systems 1/2022 Zur Ausgabe