Skip to main content

2019 | OriginalPaper | Buchkapitel

Exact Solutions for the Liénard Type Model via Fractional Homotopy Methods

verfasst von : V. F. Morales-Delgado, J. F. Gómez-Aguilar, L. Torres, R. F. Escobar-Jiménez, M. A. Taneco-Hernandez

Erschienen in: Fractional Derivatives with Mittag-Leffler Kernel

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we present the solution for a Liénard type model of a pipeline expressed by Liouville–Caputo and Atangana-Baleanu-Caputo fractional order derivatives. For this model, new approximated analytical solutions are derived by using the Laplace homotopy perturbation method and the modified homotopy analysis transform method. Both the efficiency and the accuracy of the method are verified by comparing the obtained solutions versus the exact analytical solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Kudryashov, N.A., Sinelshchikov, D.I.: On the connection of the quadratic Liénard equation with an equation for the elliptic functions. Regul. Chaotic Dyn. 20(4), 486–496 (2015)MathSciNetMATHCrossRef Kudryashov, N.A., Sinelshchikov, D.I.: On the connection of the quadratic Liénard equation with an equation for the elliptic functions. Regul. Chaotic Dyn. 20(4), 486–496 (2015)MathSciNetMATHCrossRef
3.
Zurück zum Zitat Nowak, W., Geiyer, D., Das, T.: Absolute Stability analysis using the Liénard equation: a study derived from control of fuel cell ultracapacitor hybrids. J. Dyn. Syst. Meas. Control. 138(3), 1–22 (2016)CrossRef Nowak, W., Geiyer, D., Das, T.: Absolute Stability analysis using the Liénard equation: a study derived from control of fuel cell ultracapacitor hybrids. J. Dyn. Syst. Meas. Control. 138(3), 1–22 (2016)CrossRef
4.
Zurück zum Zitat Sinha, M., Dörfler, F., Johnson, B.B., Dhople, S.V.: Synchronization of Liénard-type oscillators in uniform electrical networks. In: American Control Conference, vol. 1. IEEE, pp. 4311–4316 (2016) Sinha, M., Dörfler, F., Johnson, B.B., Dhople, S.V.: Synchronization of Liénard-type oscillators in uniform electrical networks. In: American Control Conference, vol. 1. IEEE, pp. 4311–4316 (2016)
5.
Zurück zum Zitat Martins, R.M., Mereu, A.C.: Limit cycles in discontinuous classical Liénard equations. Nonlinear Anal. R. World Appl. 20, 67–73 (2014)MATHCrossRef Martins, R.M., Mereu, A.C.: Limit cycles in discontinuous classical Liénard equations. Nonlinear Anal. R. World Appl. 20, 67–73 (2014)MATHCrossRef
6.
Zurück zum Zitat Harko, T., Liang, S.D.: Exact solutions of the Liénard-and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator. J. Eng. Math. 98(1), 93–111 (2016)MATHCrossRef Harko, T., Liang, S.D.: Exact solutions of the Liénard-and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator. J. Eng. Math. 98(1), 93–111 (2016)MATHCrossRef
7.
Zurück zum Zitat Kudryashov, N.A., Sinelshchikov, D.I.: On the integrability conditions for a family of Liénard-type equations. Regul. Chaotic Dyn. 21(5), 548–555 (2016)MathSciNetMATHCrossRef Kudryashov, N.A., Sinelshchikov, D.I.: On the integrability conditions for a family of Liénard-type equations. Regul. Chaotic Dyn. 21(5), 548–555 (2016)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Feng, Z.: On explicit exact solutions for the Liénard equation and its applications. Phys. Lett. A 239, 50–56 (2002)MATHCrossRef Feng, Z.: On explicit exact solutions for the Liénard equation and its applications. Phys. Lett. A 239, 50–56 (2002)MATHCrossRef
9.
Zurück zum Zitat Matinfar, M., Hosseinzadeh, H., Ghanbari, M.: A numerical implementation of the variational iteration method for the Liénard equation. World J. Model. Simul. 4, 205–210 (2008)MATH Matinfar, M., Hosseinzadeh, H., Ghanbari, M.: A numerical implementation of the variational iteration method for the Liénard equation. World J. Model. Simul. 4, 205–210 (2008)MATH
10.
Zurück zum Zitat Matinfar, M., Mahdavi, M., Raeisy, Z.: Exact and numerical solution of Liénard’s equation by the variational homotopy perturbation method. J. Inf. Comput. Sci. 6(1), 73–80 (2011) Matinfar, M., Mahdavi, M., Raeisy, Z.: Exact and numerical solution of Liénard’s equation by the variational homotopy perturbation method. J. Inf. Comput. Sci. 6(1), 73–80 (2011)
11.
Zurück zum Zitat Torres, L., Besancon, G., Verde, C.: Liénard type model of fluid flow in pipelines: application to estimation. In: 2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control, vol. 1. IEEE, pp. 1–6 (2015) Torres, L., Besancon, G., Verde, C.: Liénard type model of fluid flow in pipelines: application to estimation. In: 2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control, vol. 1. IEEE, pp. 1–6 (2015)
12.
Zurück zum Zitat Torres, L., Aguiñaga, J.A.D., Besancon, G., Verde, C., Begovich, O.: Equivalent Liénard-type models for a fluid transmission line. Comptes Rendus Mécanique 344(8), 582–595 (2016)CrossRef Torres, L., Aguiñaga, J.A.D., Besancon, G., Verde, C., Begovich, O.: Equivalent Liénard-type models for a fluid transmission line. Comptes Rendus Mécanique 344(8), 582–595 (2016)CrossRef
13.
Zurück zum Zitat Jiménez, J., Torres, L., Rubio, I., Sanjuan, M.: Auxiliary signal design and Liénard-type models for identifying pipeline parameters. Modeling and Monitoring of Pipelines and Networks, vol. 1, pp. 99–124. Springer International Publishing, Berlin (2017)CrossRef Jiménez, J., Torres, L., Rubio, I., Sanjuan, M.: Auxiliary signal design and Liénard-type models for identifying pipeline parameters. Modeling and Monitoring of Pipelines and Networks, vol. 1, pp. 99–124. Springer International Publishing, Berlin (2017)CrossRef
14.
Zurück zum Zitat Singh, J., Kumar, D., Qurashi, M.A., Baleanu, D.: Analysis of a new fractional model for damped Bergers’ equation. Open Phys. 15(1), 35–41 (2017)CrossRef Singh, J., Kumar, D., Qurashi, M.A., Baleanu, D.: Analysis of a new fractional model for damped Bergers’ equation. Open Phys. 15(1), 35–41 (2017)CrossRef
15.
Zurück zum Zitat Hristov, J.: Space-fractional diffusion with a potential power-law coefficient: transient approximate solution. Progr. Fract. Differ. Appl. 3(1), 19–39 (2017)MathSciNetCrossRef Hristov, J.: Space-fractional diffusion with a potential power-law coefficient: transient approximate solution. Progr. Fract. Differ. Appl. 3(1), 19–39 (2017)MathSciNetCrossRef
16.
Zurück zum Zitat Owolabi, K.M., Atangana, A.: Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction-diffusion systems. Comput. Appl. Math. 1, 1–24 (2017)MATH Owolabi, K.M., Atangana, A.: Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction-diffusion systems. Comput. Appl. Math. 1, 1–24 (2017)MATH
17.
Zurück zum Zitat Owolabi, K.M., Atangana, A.: Mathematical analysis and numerical simulation of two-component system with non-integer-order derivative in high dimensions. Adv. Differ. Equ. 1, 1–24 (2017)MathSciNetMATH Owolabi, K.M., Atangana, A.: Mathematical analysis and numerical simulation of two-component system with non-integer-order derivative in high dimensions. Adv. Differ. Equ. 1, 1–24 (2017)MathSciNetMATH
18.
Zurück zum Zitat Kumar, S., Kumar, A., Odibat, Z.M.: A nonlinear fractional model to describe the population dynamics of two interacting species. Math. Methods Appl. Sci. 1, 1–15 (2017)MathSciNetMATH Kumar, S., Kumar, A., Odibat, Z.M.: A nonlinear fractional model to describe the population dynamics of two interacting species. Math. Methods Appl. Sci. 1, 1–15 (2017)MathSciNetMATH
19.
Zurück zum Zitat Ali, F., Sheikh, N.A., Khan, I., Saqib, M.: Solutions with Wright function for time fractional free convection flow of Casson fluid. Arab. J. Sci. Eng. 42(6), 2565–2572 (2017)MathSciNetMATHCrossRef Ali, F., Sheikh, N.A., Khan, I., Saqib, M.: Solutions with Wright function for time fractional free convection flow of Casson fluid. Arab. J. Sci. Eng. 42(6), 2565–2572 (2017)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Atangana, A., Baleanu, D., Alsaedi, A.: Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal. Open Phys. 14(1), 145–149 (2016)CrossRef Atangana, A., Baleanu, D., Alsaedi, A.: Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal. Open Phys. 14(1), 145–149 (2016)CrossRef
21.
Zurück zum Zitat Atangana, A.: A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women. Neural Comput. Appl. 26(8), 1895–1903 (2015)CrossRef Atangana, A.: A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women. Neural Comput. Appl. 26(8), 1895–1903 (2015)CrossRef
22.
Zurück zum Zitat Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)MATHCrossRef Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)MATHCrossRef
23.
Zurück zum Zitat Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Fractional Differential Equations. Academic, San Diego (1999)MATH Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Fractional Differential Equations. Academic, San Diego (1999)MATH
24.
Zurück zum Zitat Atangana, A., Secer, A.: A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 1, 1–21 (2013)MathSciNetMATH Atangana, A., Secer, A.: A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 1, 1–21 (2013)MathSciNetMATH
25.
Zurück zum Zitat Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular Kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015) Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular Kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)
26.
Zurück zum Zitat Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular Kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)CrossRef Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular Kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)CrossRef
27.
Zurück zum Zitat Pirim, N.A., Ayaz, F.: A new technique for solving fractional order systems: Hermite collocation method. Appl. Math. 7(18), 1–12 (2016)CrossRef Pirim, N.A., Ayaz, F.: A new technique for solving fractional order systems: Hermite collocation method. Appl. Math. 7(18), 1–12 (2016)CrossRef
28.
Zurück zum Zitat Choudhary, S., Daftardar-Gejji, V.: Invariant subspace method: a tool for solving fractional partial differential equations (2016). arXiv:1609.04209 Choudhary, S., Daftardar-Gejji, V.: Invariant subspace method: a tool for solving fractional partial differential equations (2016). arXiv:​1609.​04209
29.
Zurück zum Zitat Hamarsheh, M., Ismail, A.I., Odibat, Z.: An analytic solution for fractional order Riccati equations by using optimal homotopy asymptotic method. Appl. Math. Sci. 10(23), 1131–1150 (2016) Hamarsheh, M., Ismail, A.I., Odibat, Z.: An analytic solution for fractional order Riccati equations by using optimal homotopy asymptotic method. Appl. Math. Sci. 10(23), 1131–1150 (2016)
31.
Zurück zum Zitat Rathore, S., Kumar, D., Singh, J., Gupta, S.: Homotopy analysis Sumudu transform method for nonlinear equations. Int. J. Ind. Math. 4(4), 301–314 (2012) Rathore, S., Kumar, D., Singh, J., Gupta, S.: Homotopy analysis Sumudu transform method for nonlinear equations. Int. J. Ind. Math. 4(4), 301–314 (2012)
32.
Zurück zum Zitat Atangana, A., Alabaraoye, E.: Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations. Adv. Differ. Equ. 94, 1–14 (2013)MATH Atangana, A., Alabaraoye, E.: Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations. Adv. Differ. Equ. 94, 1–14 (2013)MATH
33.
Zurück zum Zitat Vahidi, J.: The combined Laplace-homotopy analysis method for partial differential equations. J. Math. Comput. Sci.-JMCS 16(1), 88–102 (2016)CrossRef Vahidi, J.: The combined Laplace-homotopy analysis method for partial differential equations. J. Math. Comput. Sci.-JMCS 16(1), 88–102 (2016)CrossRef
34.
Zurück zum Zitat Atangana, A.: Extension of the Sumudu homotopy perturbation method to an attractor for onedimensional Keller-Segel equations. Appl. Math. Model. 39, 2909–2916 (2015)MathSciNetCrossRef Atangana, A.: Extension of the Sumudu homotopy perturbation method to an attractor for onedimensional Keller-Segel equations. Appl. Math. Model. 39, 2909–2916 (2015)MathSciNetCrossRef
35.
Zurück zum Zitat Pandey, R.K., Mishra, H.K.: Homotopy analysis Sumudu transform method for time-fractional third order dispersive partial differential equation. Adv. Comput. Math. 1, 1–19 (2016) Pandey, R.K., Mishra, H.K.: Homotopy analysis Sumudu transform method for time-fractional third order dispersive partial differential equation. Adv. Comput. Math. 1, 1–19 (2016)
36.
Zurück zum Zitat Abbasbandy, S., Shivanian, E., Vajravelu, K., Kumar, S.: A new approximate analytical technique for dual solutions of nonlinear differential equations arising in mixed convection heat transfer in a porous medium. Int. J. Numer. Methods Heat Fluid Flow 27(2), 486–503 (2017)CrossRef Abbasbandy, S., Shivanian, E., Vajravelu, K., Kumar, S.: A new approximate analytical technique for dual solutions of nonlinear differential equations arising in mixed convection heat transfer in a porous medium. Int. J. Numer. Methods Heat Fluid Flow 27(2), 486–503 (2017)CrossRef
37.
Zurück zum Zitat Kumar, D., Agarwal, R.P., Singh, J.: A modified numerical scheme and convergence analysis for fractional model of Liénard’s equation. J. Comput. Appl. Math. 1, 1–14 (2017) Kumar, D., Agarwal, R.P., Singh, J.: A modified numerical scheme and convergence analysis for fractional model of Liénard’s equation. J. Comput. Appl. Math. 1, 1–14 (2017)
38.
Zurück zum Zitat Singh, H.: Solution of fractional Liénard equation using Chebyshev operational matrix method. Nonlinear Sci. Lett. A 8(4), 397–404 (2017) Singh, H.: Solution of fractional Liénard equation using Chebyshev operational matrix method. Nonlinear Sci. Lett. A 8(4), 397–404 (2017)
39.
Zurück zum Zitat Jafari, H., Seifi, S.: Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Commun. Nonlinear Sci. Numer. Simul. 14(5), 2006–2012 (2009)MathSciNetMATHCrossRef Jafari, H., Seifi, S.: Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Commun. Nonlinear Sci. Numer. Simul. 14(5), 2006–2012 (2009)MathSciNetMATHCrossRef
40.
Zurück zum Zitat Jafari, H., Seifi, S.: Solving a system of nonlinear fractional partial differential equations using homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14(5), 1962–1969 (2009)MathSciNetMATHCrossRef Jafari, H., Seifi, S.: Solving a system of nonlinear fractional partial differential equations using homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14(5), 1962–1969 (2009)MathSciNetMATHCrossRef
41.
Zurück zum Zitat Liao, S.J.: A kind of approximate solution technique which does not depend upon small parameters (II): an application in fluid mechanics. Int. J. Nonlinear Mech. 32(5), 815–822 (1997)MathSciNetMATHCrossRef Liao, S.J.: A kind of approximate solution technique which does not depend upon small parameters (II): an application in fluid mechanics. Int. J. Nonlinear Mech. 32(5), 815–822 (1997)MathSciNetMATHCrossRef
42.
Zurück zum Zitat Kumar, S., Kumar, A., Odibat, Z.M.: A nonlinear fractional model to describe the population dynamics of two interacting species. Math. Methods Appl. Sci. 40(11), 4134–4148 (2017)MathSciNetMATHCrossRef Kumar, S., Kumar, A., Odibat, Z.M.: A nonlinear fractional model to describe the population dynamics of two interacting species. Math. Methods Appl. Sci. 40(11), 4134–4148 (2017)MathSciNetMATHCrossRef
43.
Zurück zum Zitat Morales-Delgado, V.F., Gómez-Aguilar, J.F., Yépez-Martínez, H., Baleanu, D., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H.: Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular. Adv. Differ. Equ. 1, 1–17 (2016)MathSciNetMATH Morales-Delgado, V.F., Gómez-Aguilar, J.F., Yépez-Martínez, H., Baleanu, D., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H.: Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular. Adv. Differ. Equ. 1, 1–17 (2016)MathSciNetMATH
44.
Zurück zum Zitat Gómez-Aguilar, J.F., Torres, L., Yépez-Martínez, H., Baleanu, D., Reyes, J.M., Sosa, I.O.: Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel. Adv. Differ. Equ. 1, 1–13 (2016)MATH Gómez-Aguilar, J.F., Torres, L., Yépez-Martínez, H., Baleanu, D., Reyes, J.M., Sosa, I.O.: Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel. Adv. Differ. Equ. 1, 1–13 (2016)MATH
45.
Zurück zum Zitat Li, C., Kumar, A., Kumar, S., Yang, X.J.: On the approximate solution of nonlinear time-fractional KdV equation via modified homotopy analysis Laplace transform method. J. Nonlinear Sci. Appl. 9, 5463–5470 (2016)MathSciNetMATHCrossRef Li, C., Kumar, A., Kumar, S., Yang, X.J.: On the approximate solution of nonlinear time-fractional KdV equation via modified homotopy analysis Laplace transform method. J. Nonlinear Sci. Appl. 9, 5463–5470 (2016)MathSciNetMATHCrossRef
46.
Zurück zum Zitat Kumar, S., Kumar, A., Argyros, I.K.: A new analysis for the Keller-Segel model of fractional order. Numer. Algorithms 75(1), 213–228 (2017)MathSciNetMATHCrossRef Kumar, S., Kumar, A., Argyros, I.K.: A new analysis for the Keller-Segel model of fractional order. Numer. Algorithms 75(1), 213–228 (2017)MathSciNetMATHCrossRef
47.
Zurück zum Zitat Chaudhry, M.H.: Applied Hydraulic Transients, pp. 426–431. Van Nostrand Reinhold, New York (1979) Chaudhry, M.H.: Applied Hydraulic Transients, pp. 426–431. Van Nostrand Reinhold, New York (1979)
48.
Zurück zum Zitat Brown, G.O.: The history of the Darcy-Weisbach equation for pipe flow resistance. Environ. Water Resour. Hist. 1, 34–43 (2003) Brown, G.O.: The history of the Darcy-Weisbach equation for pipe flow resistance. Environ. Water Resour. Hist. 1, 34–43 (2003)
49.
Zurück zum Zitat Ferrante, M., Brunone, B., Meniconi, S.: Leak detection in branched pipe systems coupling wavelet analysis and a lagrangian model. J. Water Supply Res. Technol.-AQUA 58(2), 95–106 (2009)CrossRef Ferrante, M., Brunone, B., Meniconi, S.: Leak detection in branched pipe systems coupling wavelet analysis and a lagrangian model. J. Water Supply Res. Technol.-AQUA 58(2), 95–106 (2009)CrossRef
50.
Zurück zum Zitat Wylie, E.B., Streeter, V.L., Suo, L.: Fluid Transients in Systems. Prentice Hall, Englewood Cliffs (1993) Wylie, E.B., Streeter, V.L., Suo, L.: Fluid Transients in Systems. Prentice Hall, Englewood Cliffs (1993)
51.
Zurück zum Zitat Gómez-Aguilar, J.F., Baleanu, D.: Solutions of the telegraph equations using a fractional calculus approach. Proc. Rom. Acad. A 15, 27–34 (2014)MathSciNet Gómez-Aguilar, J.F., Baleanu, D.: Solutions of the telegraph equations using a fractional calculus approach. Proc. Rom. Acad. A 15, 27–34 (2014)MathSciNet
52.
Zurück zum Zitat Liénard, A.: Etude des oscillations entretenues. Rev. Gén. Électr. 23, 901–954 (1928) Liénard, A.: Etude des oscillations entretenues. Rev. Gén. Électr. 23, 901–954 (1928)
53.
Zurück zum Zitat Gómez-Aguilar, J.F., Rosales-García, J.J., Bernal-Alvarado, J.J., Córdova-Fraga, T., Guzmán-Cabrera, R.: Fractional mechanical oscillators. Rev. Mex. Fis. 58, 524–537 (2012) Gómez-Aguilar, J.F., Rosales-García, J.J., Bernal-Alvarado, J.J., Córdova-Fraga, T., Guzmán-Cabrera, R.: Fractional mechanical oscillators. Rev. Mex. Fis. 58, 524–537 (2012)
54.
Zurück zum Zitat Calik, A.E.: Investigation of electrical RC circuit within the framework of fractional calculus. Rev. Mex. Fis. 61, 58–63 (2015)MathSciNet Calik, A.E.: Investigation of electrical RC circuit within the framework of fractional calculus. Rev. Mex. Fis. 61, 58–63 (2015)MathSciNet
Metadaten
Titel
Exact Solutions for the Liénard Type Model via Fractional Homotopy Methods
verfasst von
V. F. Morales-Delgado
J. F. Gómez-Aguilar
L. Torres
R. F. Escobar-Jiménez
M. A. Taneco-Hernandez
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-11662-0_16

Neuer Inhalt