Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2016

29.07.2015

Exact solutions of the Liénard- and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator

verfasst von: Tiberiu Harko, Shi-Dong Liang

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We investigate the connection between the linear harmonic oscillator equation and some classes of second-order nonlinear ordinary differential equations of Liénard and generalized Liénard type, which physically describe important oscillator systems. By means of a method inspired by quantum mechanics, and which consists of the deformation of the phase space coordinates of the harmonic oscillator, we generalize the equation of motion of the classical linear harmonic oscillator to several classes of strongly nonlinear differential equations. The first integrals, and a number of exact solutions of the corresponding equations, are explicitly obtained. The devised method can be further generalized to derive explicit general solutions of nonlinear second-order differential equations unrelated to the harmonic oscillator. Applications of the obtained results for the study of the traveling wave solutions of the reaction–convection–diffusion equations, and of the large amplitude-free vibrations of a uniform cantilever beam, are also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liénard A (1928) Étude des oscillations entretenues. Revue générale de l’électricité 23:901–912, 946–954 Liénard A (1928) Étude des oscillations entretenues. Revue générale de l’électricité 23:901–912, 946–954
3.
Zurück zum Zitat Andronov AA, Leontovich EA, Gordon II, Maier AG (1973) Qualitative theory of second order dynamic systems. Wiley, New YorkMATH Andronov AA, Leontovich EA, Gordon II, Maier AG (1973) Qualitative theory of second order dynamic systems. Wiley, New YorkMATH
4.
Zurück zum Zitat Chandrasekar VK, Senthilvelan M, Kundu A, Lakshmanan M (2006) A nonlocal connection between certain linear and nonlinear ordinary differential equations/oscillators. J Phys A 39:9743–9754ADSMathSciNetCrossRefMATH Chandrasekar VK, Senthilvelan M, Kundu A, Lakshmanan M (2006) A nonlocal connection between certain linear and nonlinear ordinary differential equations/oscillators. J Phys A 39:9743–9754ADSMathSciNetCrossRefMATH
5.
6.
Zurück zum Zitat Zou L, Chen X, Zhang W (2008) Local bifurcations of critical periods for cubic Linard equations with cubic damping. J Comput Appl Math 222:404–410ADSMathSciNetCrossRefMATH Zou L, Chen X, Zhang W (2008) Local bifurcations of critical periods for cubic Linard equations with cubic damping. J Comput Appl Math 222:404–410ADSMathSciNetCrossRefMATH
7.
Zurück zum Zitat Pandey SN, Bindu PS, Senthilvelan M, Lakshmanan M (2009) A group theoretical identification of integrable cases of the Linard-type equation \(x{^{\prime \prime }}+f(x)x+g(x)\)=0: I. Equations having nonmaximal number of Lie point symmetries. J Math Phys 50:082702–082702-19ADSMathSciNetCrossRefMATH Pandey SN, Bindu PS, Senthilvelan M, Lakshmanan M (2009) A group theoretical identification of integrable cases of the Linard-type equation \(x{^{\prime \prime }}+f(x)x+g(x)\)=0: I. Equations having nonmaximal number of Lie point symmetries. J Math Phys 50:082702–082702-19ADSMathSciNetCrossRefMATH
8.
Zurück zum Zitat Pandey SN, Bindu PS, Senthilvelan M, Lakshmanan M (2009) A group theoretical identification of integrable equations in the Linard-type equation \(x{^{\prime \prime }}+f(x)x+g(x)\)=0: II. Equations having maximal Lie point symmetries. J Math Phys 50:102701–102701-25ADSMathSciNetCrossRefMATH Pandey SN, Bindu PS, Senthilvelan M, Lakshmanan M (2009) A group theoretical identification of integrable equations in the Linard-type equation \(x{^{\prime \prime }}+f(x)x+g(x)\)=0: II. Equations having maximal Lie point symmetries. J Math Phys 50:102701–102701-25ADSMathSciNetCrossRefMATH
10.
Zurück zum Zitat Messias M, Alves G, Márcio R (2011) Time-periodic perturbation of a Liénard equation with an unbounded homoclinic loop. Physica D 240:1402–1409ADSMathSciNetCrossRefMATH Messias M, Alves G, Márcio R (2011) Time-periodic perturbation of a Liénard equation with an unbounded homoclinic loop. Physica D 240:1402–1409ADSMathSciNetCrossRefMATH
11.
Zurück zum Zitat Mickens RE (2010) Truly nonlinear oscillations: harmonic balance, parameter expansions, iteration, and averaging methods. World Scientific, LondonCrossRefMATH Mickens RE (2010) Truly nonlinear oscillations: harmonic balance, parameter expansions, iteration, and averaging methods. World Scientific, LondonCrossRefMATH
13.
Zurück zum Zitat DiBenedetto E (2011) Classical mechanics: theory and mathematical modeling. Springer, New YorkCrossRefMATH DiBenedetto E (2011) Classical mechanics: theory and mathematical modeling. Springer, New YorkCrossRefMATH
14.
Zurück zum Zitat Mak MK, Harko T (2012) New integrability case for the Riccati equation. Appl Math Comput 218:10974–10981MathSciNetMATH Mak MK, Harko T (2012) New integrability case for the Riccati equation. Appl Math Comput 218:10974–10981MathSciNetMATH
15.
Zurück zum Zitat Mak MK, Harko T (2013) New further integrability cases for the Riccati equation. Appl Math Comput 219:7465–7471MathSciNetMATH Mak MK, Harko T (2013) New further integrability cases for the Riccati equation. Appl Math Comput 219:7465–7471MathSciNetMATH
16.
Zurück zum Zitat Harko T, Lobo FSN, Mak MK (2014) Analytical solutions of the Riccati equation with coefficients satisfying integral or differential conditions with arbitrary functions. Univ J Appl Math 2:109–118 Harko T, Lobo FSN, Mak MK (2014) Analytical solutions of the Riccati equation with coefficients satisfying integral or differential conditions with arbitrary functions. Univ J Appl Math 2:109–118
17.
Zurück zum Zitat Euler N (1997) Transformation properties of \(\frac{{\rm d}^2x}{{\rm d}t^2} +f_1 (t)\frac{{\rm d}x}{{\rm d}t} +f_2 (t) x+f_3 (t) x^n = 0\). J Nonlinear Math Phys 4:310–337ADSMathSciNetCrossRefMATH Euler N (1997) Transformation properties of \(\frac{{\rm d}^2x}{{\rm d}t^2} +f_1 (t)\frac{{\rm d}x}{{\rm d}t} +f_2 (t) x+f_3 (t) x^n = 0\). J Nonlinear Math Phys 4:310–337ADSMathSciNetCrossRefMATH
18.
Zurück zum Zitat Harko T, Lobo FSN, Mak MK (2013) Integrability cases for the anharmonic oscillator equation. J Pure Appl Math 10:115–129 Harko T, Lobo FSN, Mak MK (2013) Integrability cases for the anharmonic oscillator equation. J Pure Appl Math 10:115–129
19.
Zurück zum Zitat Harko T, Lobo FSN, Mak MK (2014) A class of exact solutions of the Linard type ordinary non-linear differential equation. J Eng Math 89:193–205MathSciNetCrossRef Harko T, Lobo FSN, Mak MK (2014) A class of exact solutions of the Linard type ordinary non-linear differential equation. J Eng Math 89:193–205MathSciNetCrossRef
20.
Zurück zum Zitat Harko T, Lobo FSN, Mak MK (2013) A Chiellini type integrability condition for the generalized first kind Abel differential equation. Univ J Appl Math 1:101–104 Harko T, Lobo FSN, Mak MK (2013) A Chiellini type integrability condition for the generalized first kind Abel differential equation. Univ J Appl Math 1:101–104
21.
Zurück zum Zitat Mancas SC, Rosu HC (2013) Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations. Phys Lett A 377:1234–1238MathSciNetCrossRefMATH Mancas SC, Rosu HC (2013) Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations. Phys Lett A 377:1234–1238MathSciNetCrossRefMATH
22.
Zurück zum Zitat Rosu HC, Cornejo-Perez O, Chen P (2012) Nonsingular parametric oscillators Darboux-related to the classical harmonic oscillator. Europhys Lett 100:60006ADSCrossRef Rosu HC, Cornejo-Perez O, Chen P (2012) Nonsingular parametric oscillators Darboux-related to the classical harmonic oscillator. Europhys Lett 100:60006ADSCrossRef
24.
Zurück zum Zitat Chandrasekar VK, Senthilvelan M, Lakshmanan M (2005) Unusual Liénard-type nonlinear oscillator. Phys Rev E 72:066203ADSCrossRef Chandrasekar VK, Senthilvelan M, Lakshmanan M (2005) Unusual Liénard-type nonlinear oscillator. Phys Rev E 72:066203ADSCrossRef
25.
Zurück zum Zitat Chandrasekar VK, Senthilvelan M, Lakshmanan M (2007) On the general solution for the modified Emden-type equation \(\ddot{x} + \alpha x\dot{x}+ \beta x^3 = 0\). J Phys A 40:4717–4727ADSMathSciNetCrossRefMATH Chandrasekar VK, Senthilvelan M, Lakshmanan M (2007) On the general solution for the modified Emden-type equation \(\ddot{x} + \alpha x\dot{x}+ \beta x^3 = 0\). J Phys A 40:4717–4727ADSMathSciNetCrossRefMATH
26.
Zurück zum Zitat Chandrasekar VK, Sheeba JH, Pradeep G, Divyasreea RS, Lakshmanan M (2012) A class of solvable coupled nonlinear oscillators with amplitude independent frequencies. Phys Lett A 376:2188–2194ADSCrossRefMATH Chandrasekar VK, Sheeba JH, Pradeep G, Divyasreea RS, Lakshmanan M (2012) A class of solvable coupled nonlinear oscillators with amplitude independent frequencies. Phys Lett A 376:2188–2194ADSCrossRefMATH
28.
Zurück zum Zitat Durga Devi A, Gladwin Pradeep R, Chandrasekar VK, Lakshmanan M (2013) Method of generating N-dimensional isochronous nonsingular Hamiltonian systems. J Nonlinear Math Phys 20:78–93MathSciNetCrossRef Durga Devi A, Gladwin Pradeep R, Chandrasekar VK, Lakshmanan M (2013) Method of generating N-dimensional isochronous nonsingular Hamiltonian systems. J Nonlinear Math Phys 20:78–93MathSciNetCrossRef
29.
Zurück zum Zitat Chithiika Ruby V, Senthilvelan M, Lakshmanan M (2012) Exact quantization of a PT-symmetric (reversible) Liénard-type nonlinear oscillator. J Phys A 45:382002ADSMathSciNetCrossRefMATH Chithiika Ruby V, Senthilvelan M, Lakshmanan M (2012) Exact quantization of a PT-symmetric (reversible) Liénard-type nonlinear oscillator. J Phys A 45:382002ADSMathSciNetCrossRefMATH
30.
Zurück zum Zitat Gubbiottia G, Nucci MC (2014) Noether symmetries and the quantization of a Liénard-type nonlinear oscillator. J Nonlinear Math Phys 21:248–264MathSciNetCrossRef Gubbiottia G, Nucci MC (2014) Noether symmetries and the quantization of a Liénard-type nonlinear oscillator. J Nonlinear Math Phys 21:248–264MathSciNetCrossRef
32.
Zurück zum Zitat Dasarathy BV (1975) Equivalent linear models for non-linear non-autonomous systems. J Sound Vib 42:447–452ADSCrossRefMATH Dasarathy BV (1975) Equivalent linear models for non-linear non-autonomous systems. J Sound Vib 42:447–452ADSCrossRefMATH
33.
34.
Zurück zum Zitat Sawada K, Osawa T (1978) On exactly soluble nonlinear ordinary differential equations of the Liénard type. J Phys Soc Jpn 44:1730–1732ADSMathSciNetCrossRefMATH Sawada K, Osawa T (1978) On exactly soluble nonlinear ordinary differential equations of the Liénard type. J Phys Soc Jpn 44:1730–1732ADSMathSciNetCrossRefMATH
35.
Zurück zum Zitat Merzbacher E (1998) Quantum mechanics. Wiley, New YorkMATH Merzbacher E (1998) Quantum mechanics. Wiley, New YorkMATH
36.
37.
Zurück zum Zitat Arcos-Olalla R, Reyes MA, Rosu HC (2012) An alternative factorization of the quantum harmonic oscillator and two-parameter family of self-adjoint operators. Phys Lett A 376:2860–2865ADSMathSciNetCrossRef Arcos-Olalla R, Reyes MA, Rosu HC (2012) An alternative factorization of the quantum harmonic oscillator and two-parameter family of self-adjoint operators. Phys Lett A 376:2860–2865ADSMathSciNetCrossRef
38.
Zurück zum Zitat Ibragimov NH (2009) A practical course in differential equations and mathematical modelling. World Scientific, LondonCrossRef Ibragimov NH (2009) A practical course in differential equations and mathematical modelling. World Scientific, LondonCrossRef
39.
Zurück zum Zitat Gilding BH, Kersner R (1996) The characterization of reaction–convection–diffusion processes by travelling waves. J Differ Equ 124:27–79ADSMathSciNetCrossRefMATH Gilding BH, Kersner R (1996) The characterization of reaction–convection–diffusion processes by travelling waves. J Differ Equ 124:27–79ADSMathSciNetCrossRefMATH
40.
Zurück zum Zitat Mei Z (2000) Numerical bifurcation analysis for reaction–diffusion equations. Springer, BerlinCrossRefMATH Mei Z (2000) Numerical bifurcation analysis for reaction–diffusion equations. Springer, BerlinCrossRefMATH
41.
Zurück zum Zitat Wilhelmsson H, Lazzaro E (2001) Reaction–diffusion problems in the physics of hot plasmas. Institute of Physics Publishing, BristolCrossRef Wilhelmsson H, Lazzaro E (2001) Reaction–diffusion problems in the physics of hot plasmas. Institute of Physics Publishing, BristolCrossRef
42.
Zurück zum Zitat Gilding BH, Kersner R (2004) Travelling waves in nonlinear diffusion convection reaction. Birkhäuser, BaselCrossRefMATH Gilding BH, Kersner R (2004) Travelling waves in nonlinear diffusion convection reaction. Birkhäuser, BaselCrossRefMATH
43.
Zurück zum Zitat Harko T, Mak MK (2015) Travelling wave solutions of the reaction–diffusion mathematical model of glioblastoma growth: an Abel equation based approach. Math Biosci Eng 12:41–69MathSciNetCrossRefMATH Harko T, Mak MK (2015) Travelling wave solutions of the reaction–diffusion mathematical model of glioblastoma growth: an Abel equation based approach. Math Biosci Eng 12:41–69MathSciNetCrossRefMATH
44.
Zurück zum Zitat Solovyova A, Schuck P, Costenaro L, Ebel C (2001) Non-ideality by sedimentation velocity of halophilic malate dehydrogenase in complex solvents. Biophys J 81:1868–1880CrossRef Solovyova A, Schuck P, Costenaro L, Ebel C (2001) Non-ideality by sedimentation velocity of halophilic malate dehydrogenase in complex solvents. Biophys J 81:1868–1880CrossRef
45.
Zurück zum Zitat Follain N, Valleton J-M, Lebrun L, Alexandre B, Schaetzel P, Metayer M, Marais S (2010) Simulation of kinetic curves in mass transfer phenomena for a concentration-dependent diffusion coefficient in polymer membranes. J Membr Sci 349:195–207CrossRef Follain N, Valleton J-M, Lebrun L, Alexandre B, Schaetzel P, Metayer M, Marais S (2010) Simulation of kinetic curves in mass transfer phenomena for a concentration-dependent diffusion coefficient in polymer membranes. J Membr Sci 349:195–207CrossRef
46.
Zurück zum Zitat Joannés S, Mazé L, Bunsell AR (2014) A concentration-dependent diffusion coefficient model for water sorption in composite. Compos Struct 108:111–118CrossRef Joannés S, Mazé L, Bunsell AR (2014) A concentration-dependent diffusion coefficient model for water sorption in composite. Compos Struct 108:111–118CrossRef
47.
Zurück zum Zitat Hamdan MN, Dado MHF (1997) Large aplitude free vibrations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. J Sound Vib 206:151–168ADSCrossRef Hamdan MN, Dado MHF (1997) Large aplitude free vibrations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. J Sound Vib 206:151–168ADSCrossRef
48.
Zurück zum Zitat He JH (2005) Homotopy perturbation method for bifurcation of nonlinear problems. Int J Nonlinear Sci Numer Simul 6:207–208MathSciNet He JH (2005) Homotopy perturbation method for bifurcation of nonlinear problems. Int J Nonlinear Sci Numer Simul 6:207–208MathSciNet
49.
Zurück zum Zitat Yildirim A (2010) Determination of periodic solutions for nonlinear oscillators with fractional powers by He’s modified Lindstedt–Poincaré method. Meccanica 45:1–6MathSciNetCrossRefMATH Yildirim A (2010) Determination of periodic solutions for nonlinear oscillators with fractional powers by He’s modified Lindstedt–Poincaré method. Meccanica 45:1–6MathSciNetCrossRefMATH
50.
Zurück zum Zitat Ramos JI (2009) An artificial parameter Linstedt–Poincaré method for oscillators with smooth odd nonlinearities. Chaos Solitons Fractals 41:380–393ADSCrossRefMATH Ramos JI (2009) An artificial parameter Linstedt–Poincaré method for oscillators with smooth odd nonlinearities. Chaos Solitons Fractals 41:380–393ADSCrossRefMATH
51.
Zurück zum Zitat Herisanu N, Marinca V (2010) Explicit analytical approximation to large-amplitude non-linear oscillations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. Meccanica 45:847–855MathSciNetCrossRefMATH Herisanu N, Marinca V (2010) Explicit analytical approximation to large-amplitude non-linear oscillations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. Meccanica 45:847–855MathSciNetCrossRefMATH
52.
Zurück zum Zitat Akbarzade M, Khanb Y (2012) Dynamic model of large amplitude non-linear oscillations arising in the structural engineering: analytical solutions. Math Comput Model 55:480–489MathSciNetCrossRefMATH Akbarzade M, Khanb Y (2012) Dynamic model of large amplitude non-linear oscillations arising in the structural engineering: analytical solutions. Math Comput Model 55:480–489MathSciNetCrossRefMATH
Metadaten
Titel
Exact solutions of the Liénard- and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator
verfasst von
Tiberiu Harko
Shi-Dong Liang
Publikationsdatum
29.07.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2016
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-015-9812-z

Weitere Artikel der Ausgabe 1/2016

Journal of Engineering Mathematics 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.