2017 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Algebra II
Let us identify the Euclidean coordinate plane \(\mathbb{R}^{2}\) with the field \(\mathbb{C}\) in the standard way.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
See Section 3.5.1 of Algebra I.
The parametric equation
z =
a + (
b −
a) ⋅
t defines the line
ℓ
a, b as
t runs through
\(\mathbb{R}\), and defines the circle
C
a, b as
t runs through the unit circle
\(\mathop{\mathrm{U}}\nolimits _{1} \subset \mathbb{C}\).
See Section
13.3 of Algebra I.
See Theorem
13.7 on p. 313.
Obtained from the relation cos(3
φ) = 4cos
φ − 3cos
2
φ for
φ =
π∕9.
Recall that the cyclotomic polynomial
\(\Phi _{p}(x)\) is irreducible for prime
\(p \in \mathbb{N}\) by Eisenstein’s criterion; see Example 5.9 of Algebra I.
See Example
13.6 on p. 313.
Compare with Section 3.6.3 of Algebra I.
See the discussion after formula (
3.22) of Algebra I.
See Sect.
5.4.2 on p. 111.
In addition to the already cited Sect.
5.4.2, see Exercise 5.15 on p. 111.
See Section 13.3.1 of Algebra I.
Note that
a
1,
a
2,
…,
a
n are polynomials in
t
1,
t
2,
…,
t
n by Viète’s theorem.
See Problem 12.3 on p. 294 and Example
13.1 on p. 298.
See Section 3.6.3 of Algebra I and compare this problem with Problems 3.38 and 9.7 from Algebra I.
That is, the integral closure of
\(\mathbb{Z}\) in
\(\mathbb{K}\).
[DK]
Zurück zum Zitat Danilov, V.I., Koshevoy, G.A.: Arrays and the Combinatorics of Young Tableaux, Russian Math. Surveys 60:2 (2005), 269–334. MathSciNetCrossRef Danilov, V.I., Koshevoy, G.A.: Arrays and the Combinatorics of Young Tableaux,
Russian Math. Surveys 60:2 (2005), 269–334.
MathSciNetCrossRef
[Fu]
Zurück zum Zitat Fulton, W.: Young Tableaux with Applications to Representation Theory and Geometry. Cambridge University Press, 1997. MATH Fulton, W.:
Young Tableaux with Applications to Representation Theory and Geometry. Cambridge University Press, 1997.
MATH
[FH]
Zurück zum Zitat Fulton, W., Harris, J.: Representation Theory: A First Course, Graduate Texts in Mathematics. Cambridge University Press, 1997. MATH Fulton, W., Harris, J.:
Representation Theory: A First Course, Graduate Texts in Mathematics. Cambridge University Press, 1997.
MATH
[Mo]
Zurück zum Zitat Morris, S. A.: Pontryagin Duality and the Structure of Locally Compact Abelian Groups, London Math. Society LNS 29. Cambridge University Press, 1977. Morris, S. A.:
Pontryagin Duality and the Structure of Locally Compact Abelian Groups, London Math. Society LNS 29. Cambridge University Press, 1977.
- Titel
- Examples of Galois Groups
- DOI
- https://doi.org/10.1007/978-3-319-50853-5_14
- Autor:
-
Alexey L. Gorodentsev
- Verlag
- Springer International Publishing
- Sequenznummer
- 14
- Kapitelnummer
- Chapter 14