Skip to main content
Erschienen in: Journal of Electronic Materials 8/2021

26.05.2021 | Original Research Article

Excited-State Absorption Assisted Optical Limiting Action of Potassium Dihydrogen Phosphate (KDP)–Polyethylene Oxide (PEO) Electrospun Nanofibers

verfasst von: C. Yogeswari, T. C. Sabari Girisun, R. Nagalakshmi

Erschienen in: Journal of Electronic Materials | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

By employing different flow rates (0.1 mL/h, 0.4 mL/h, 0.6 mL/h) in an electrospinning route, potassium dihydrogen phosphate (KDP)–polyethylene oxide (PEO) nanofibers with different diameters were successfully prepared. Scanning electron microscopy (SEM) showed the formation of PEO nanofiber morphology with average diameters of 410 nm, 435 nm, and 439 nm for flow rates of 0.1 mL/h, 0.4 mL/h, and 0.6 mL/h, respectively. Using x-ray diffraction (XRD), the presence of KDP in the fiber matrix was confirmed from the intense diffraction peak at 2θ = 24°, which corresponds to the (200) plane of KDP, and the nanofiber exhibited variation in crystallite size, ranging from 30 nm to 41 nm with different flow rates. The lattice strain of the prepared samples decreased with increasing flow rate. A blueshift in the absorption edge and an increase in optical band gap were observed for spun fibers (215 nm, 6.04 eV) with bulk KDP (280 nm, 5.82 eV) due to changes in the dielectric properties of the material. From the recorded photoluminescence (PL) spectra, dominant green emission at 565 nm was observed. Electrospun KDP-PEO nanofibers exhibited a frequency doubling phenomenon with relative SHG efficiency twice that of KDP. In addition, intensity-dependent Z-scan measurements were performed with a Q-switched neodymium-doped yttrium aluminium garnet (Nd:YAG) laser as an excitation source (532 nm, 5 ns, 10 Hz). The excited-state absorption process played a dominant role in the observed nonlinearity in the KDP-PEO nanofibers. The demonstrated sequential two-photon absorption-based optical limiting action makes KDP-PEO nanofibers a versatile optical limiting material for eye safety devices against intense laser pulse.

Graphic Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Nirmala, R. Navamathavan, S.J. Park, and H.Y. Kim, Nano-Micro Lett. 6, 89 (2014).CrossRef R. Nirmala, R. Navamathavan, S.J. Park, and H.Y. Kim, Nano-Micro Lett. 6, 89 (2014).CrossRef
2.
Zurück zum Zitat C. Zhang, Y. Yan, Y. Sheng Zhao, and J. Yao, Phys. Chem. 109, 211 (2013). C. Zhang, Y. Yan, Y. Sheng Zhao, and J. Yao, Phys. Chem. 109, 211 (2013).
4.
Zurück zum Zitat R.N. Kostoff, R.G. Koytcheff, and C.G.Y. Lau, Technol. Forecast. Soc. Change. 74, 1733 (2007).CrossRef R.N. Kostoff, R.G. Koytcheff, and C.G.Y. Lau, Technol. Forecast. Soc. Change. 74, 1733 (2007).CrossRef
5.
Zurück zum Zitat G. Markovich, C.P. Collier, S.E. Henrichs, F. Remacle, R.D. Levine, and J.R. Heath, Acc. Chem. Res. 32, 415 (1999).CrossRef G. Markovich, C.P. Collier, S.E. Henrichs, F. Remacle, R.D. Levine, and J.R. Heath, Acc. Chem. Res. 32, 415 (1999).CrossRef
6.
Zurück zum Zitat C. Chen, Y. Tang, B. Vlahovic, and F. Yan, Nanoscale Res. Lett. 12, 451 (2017).CrossRef C. Chen, Y. Tang, B. Vlahovic, and F. Yan, Nanoscale Res. Lett. 12, 451 (2017).CrossRef
7.
Zurück zum Zitat Y.P. Sun, J.E. Riggs, K.B. Henbest, and R.B. Martin, J Nonlinear Opt. Phys. Mater. 09, 481 (2000).CrossRef Y.P. Sun, J.E. Riggs, K.B. Henbest, and R.B. Martin, J Nonlinear Opt. Phys. Mater. 09, 481 (2000).CrossRef
8.
9.
Zurück zum Zitat C. Maunier, P. Bouchut, S. Bouillet, H. Cabane, R. Courchinoux, P. Defossez, J.C. Poncetta, and N. Ferriou-Daurios, Opt. Mater. 30, 88 (2007).CrossRef C. Maunier, P. Bouchut, S. Bouillet, H. Cabane, R. Courchinoux, P. Defossez, J.C. Poncetta, and N. Ferriou-Daurios, Opt. Mater. 30, 88 (2007).CrossRef
10.
Zurück zum Zitat T. Ludwig, C. Bohr, A. Queraltó, R. Frohnhoven, T. Fischer, and S. Mathur, Semicond. Semimet. 98, 1 (2018).CrossRef T. Ludwig, C. Bohr, A. Queraltó, R. Frohnhoven, T. Fischer, and S. Mathur, Semicond. Semimet. 98, 1 (2018).CrossRef
11.
Zurück zum Zitat S. Ibrahim, S.M. Mohd Yasin, N.M. Nee, R. Ahmad, and M.R. Johan, Solid State Commun. 152, 426 (2012).CrossRef S. Ibrahim, S.M. Mohd Yasin, N.M. Nee, R. Ahmad, and M.R. Johan, Solid State Commun. 152, 426 (2012).CrossRef
12.
Zurück zum Zitat E.M. Abdelrazek, A.M. Abdelghany, S.I. Badr, and M.A. Morsi, J. Mater. Res. Technol. 7, 419 (2018).CrossRef E.M. Abdelrazek, A.M. Abdelghany, S.I. Badr, and M.A. Morsi, J. Mater. Res. Technol. 7, 419 (2018).CrossRef
13.
14.
Zurück zum Zitat M.A. Firestone, M.A. Ratner, and T.J. Marks, Macromolecules 28, 6296 (1995).CrossRef M.A. Firestone, M.A. Ratner, and T.J. Marks, Macromolecules 28, 6296 (1995).CrossRef
15.
Zurück zum Zitat H. Cho, S.Y. Min, and T.W. Lee, Macromol. Mater. Eng. 298, 475 (2013).CrossRef H. Cho, S.Y. Min, and T.W. Lee, Macromol. Mater. Eng. 298, 475 (2013).CrossRef
16.
Zurück zum Zitat B. Dhandayuthapani, Y. Yasuhiko, T. Maekawa, and D.S. Kumar, Mater. Res. 14, 317 (2011).CrossRef B. Dhandayuthapani, Y. Yasuhiko, T. Maekawa, and D.S. Kumar, Mater. Res. 14, 317 (2011).CrossRef
17.
Zurück zum Zitat S. Zargham, S. Bazgir, A. Tavakoli, A. S. Rashidi, and R. Damerchely, J. Eng. Fibers. Fabr. 7 (2012). S. Zargham, S. Bazgir, A. Tavakoli, A. S. Rashidi, and R. Damerchely, J. Eng. Fibers. Fabr. 7 (2012).
18.
19.
Zurück zum Zitat E. Öznergiz, Y.E. Kiyak, M.E. Kamasak, and I. Yildirim, J. Nanomater. 2014, 738490 (2014). E. Öznergiz, Y.E. Kiyak, M.E. Kamasak, and I. Yildirim, J. Nanomater. 2014, 738490 (2014).
20.
Zurück zum Zitat E.H. Shin, K.S. Cho, M.H. Seo, and H. Kim, Determination of electrospun fiber diameter distributions using image analysis processingMacromol. Res. 16, 314 (2008).CrossRef E.H. Shin, K.S. Cho, M.H. Seo, and H. Kim, Determination of electrospun fiber diameter distributions using image analysis processingMacromol. Res. 16, 314 (2008).CrossRef
21.
Zurück zum Zitat B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J.F. Löffler, T. Feurer, and Y. Ekinci, ACS Nano 5, 6374 (2011).CrossRef B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J.F. Löffler, T. Feurer, and Y. Ekinci, ACS Nano 5, 6374 (2011).CrossRef
22.
Zurück zum Zitat L.A. Bauer, N.S. Birenbaum, and G.J. Meyer, J. Mater. Chem. 14, 517 (2004).CrossRef L.A. Bauer, N.S. Birenbaum, and G.J. Meyer, J. Mater. Chem. 14, 517 (2004).CrossRef
23.
Zurück zum Zitat D. Wang, S. Wang, J. Wang, C. Shen, J. Ding, W. Li, P. Huang, and C. Lu, Opt. Mater. Express. 7, 533 (2017).CrossRef D. Wang, S. Wang, J. Wang, C. Shen, J. Ding, W. Li, P. Huang, and C. Lu, Opt. Mater. Express. 7, 533 (2017).CrossRef
25.
Zurück zum Zitat C. Yogeswari, K.M. Hijas, T.C.S. Girisun, and R. Nagalakshmi, Opt. Mater. 100, 109691 (2020).CrossRef C. Yogeswari, K.M. Hijas, T.C.S. Girisun, and R. Nagalakshmi, Opt. Mater. 100, 109691 (2020).CrossRef
26.
Zurück zum Zitat A. Kumar, R. Jose, K. Fujihara, J. Wang, and S. Ramakrishna, Chem. Mater. 19, 6536 (2007).CrossRef A. Kumar, R. Jose, K. Fujihara, J. Wang, and S. Ramakrishna, Chem. Mater. 19, 6536 (2007).CrossRef
27.
Zurück zum Zitat R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, and A.C. Bose, Solid State Commun. 149, 1919 (2009).CrossRef R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, and A.C. Bose, Solid State Commun. 149, 1919 (2009).CrossRef
28.
Zurück zum Zitat H. Gonçalves, I. Saavedra, M. Lúcio, S. Bernstorff, E. Gomes, and M. Belsley, J. Nanoparticle Res. 20, 248 (2018).CrossRef H. Gonçalves, I. Saavedra, M. Lúcio, S. Bernstorff, E. Gomes, and M. Belsley, J. Nanoparticle Res. 20, 248 (2018).CrossRef
29.
Zurück zum Zitat S. Tsunekawa, T. Fukuda, and A. Kasuya, J. Appl. Phys. 87, 1318 (2000).CrossRef S. Tsunekawa, T. Fukuda, and A. Kasuya, J. Appl. Phys. 87, 1318 (2000).CrossRef
30.
Zurück zum Zitat M. Uddin, J. Sannigrahi, M. Masud, D. Bhadra, and B. Chaudhuri, J. Appl. Polym. Sci. 125, 2363 (2012).CrossRef M. Uddin, J. Sannigrahi, M. Masud, D. Bhadra, and B. Chaudhuri, J. Appl. Polym. Sci. 125, 2363 (2012).CrossRef
31.
Zurück zum Zitat L.N. Mahour, H.K. Choudhary, R. Kumar, A.V. Anupama, and B. Sahoo, Ceramics 45, 24625 (2019).CrossRef L.N. Mahour, H.K. Choudhary, R. Kumar, A.V. Anupama, and B. Sahoo, Ceramics 45, 24625 (2019).CrossRef
32.
Zurück zum Zitat I.-D. Hussein, A. Al-Saidi, and F. Sadik, Adv. Mater. Phys. Chem. 6, 120 (2016).CrossRef I.-D. Hussein, A. Al-Saidi, and F. Sadik, Adv. Mater. Phys. Chem. 6, 120 (2016).CrossRef
33.
Zurück zum Zitat M. Basappa, L. Yesappa, S.P. Ashokkumar, H. Vijeth, and H. Devendrappa, AIP Conf. Proc. 2244, 080018 (2020).CrossRef M. Basappa, L. Yesappa, S.P. Ashokkumar, H. Vijeth, and H. Devendrappa, AIP Conf. Proc. 2244, 080018 (2020).CrossRef
34.
Zurück zum Zitat G. Cao, and Y. Wang, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, 2nd ed., (Singapore: World Scientific Pub, 2004).CrossRef G. Cao, and Y. Wang, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, 2nd ed., (Singapore: World Scientific Pub, 2004).CrossRef
35.
Zurück zum Zitat E. Berardo, and M.A. Zwijnenburg, J. Phys. Chem. C. 119, 13384 (2015).CrossRef E. Berardo, and M.A. Zwijnenburg, J. Phys. Chem. C. 119, 13384 (2015).CrossRef
36.
37.
Zurück zum Zitat C. Babeela, T.C. Sabari Girisun, and G. Vinitha, J. Phys. D Appl. Phys. 48, 065102 (2015).CrossRef C. Babeela, T.C. Sabari Girisun, and G. Vinitha, J. Phys. D Appl. Phys. 48, 065102 (2015).CrossRef
38.
Zurück zum Zitat M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, and E.W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).CrossRef M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, and E.W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).CrossRef
39.
Zurück zum Zitat A. Kumar, R. Kumar, N. Verma, A.V. Anupama, H.K. Choudhary, R. Philip, and B. Sahoo, Opt. Mater. 108, 10163 (2020). A. Kumar, R. Kumar, N. Verma, A.V. Anupama, H.K. Choudhary, R. Philip, and B. Sahoo, Opt. Mater. 108, 10163 (2020).
40.
Zurück zum Zitat P.G. Louie Frobel, S.R. Suresh, S. Mayadevi, S. Sreeja, C. Mukherjee, and C.I. Muneera, Mater. Chemi. Phys. 129, 981 (2011).CrossRef P.G. Louie Frobel, S.R. Suresh, S. Mayadevi, S. Sreeja, C. Mukherjee, and C.I. Muneera, Mater. Chemi. Phys. 129, 981 (2011).CrossRef
41.
Zurück zum Zitat N. Priyadarshani, T.C. Sabari Girisun, and S. Venugopal Rao, Mater. Chemi. Phys. 220, 342 (2018).CrossRef N. Priyadarshani, T.C. Sabari Girisun, and S. Venugopal Rao, Mater. Chemi. Phys. 220, 342 (2018).CrossRef
42.
Zurück zum Zitat P. Poornesh, G. Umesh, P.K. Hegde, M.G. Manjunatha, K.B. Manjunatha, A.V. Adhikari, and A. Adhikari, Appl. Phys B. 97, 117 (2009).CrossRef P. Poornesh, G. Umesh, P.K. Hegde, M.G. Manjunatha, K.B. Manjunatha, A.V. Adhikari, and A. Adhikari, Appl. Phys B. 97, 117 (2009).CrossRef
43.
Zurück zum Zitat Y. Chen, J. Doyle, Y. Liu, A. Strevens, Y. Lin, M. El-Khouly, Y. Araki, W. Blau, and O. Ito, J. Photochem. Photobiol A. 185, 263 (2007).CrossRef Y. Chen, J. Doyle, Y. Liu, A. Strevens, Y. Lin, M. El-Khouly, Y. Araki, W. Blau, and O. Ito, J. Photochem. Photobiol A. 185, 263 (2007).CrossRef
44.
Zurück zum Zitat D. Wang, T. Li, S. Wang, J. Wang, Z. Wang, J. Ding, W. Li, C. Shen, G. Liu, and P. Huang, Cryst. Eng. Comm. 18, 9292 (2016).CrossRef D. Wang, T. Li, S. Wang, J. Wang, Z. Wang, J. Ding, W. Li, C. Shen, G. Liu, and P. Huang, Cryst. Eng. Comm. 18, 9292 (2016).CrossRef
45.
Zurück zum Zitat M.R. Parida, C. Vijayan, C.S. Rout, C.S.S. Sandeep, R. Philip, and P.C. Deshmukh, J. Phys. Chem. C 115, 112 (2011).CrossRef M.R. Parida, C. Vijayan, C.S. Rout, C.S.S. Sandeep, R. Philip, and P.C. Deshmukh, J. Phys. Chem. C 115, 112 (2011).CrossRef
46.
Zurück zum Zitat C.S. Suchand Sandeep, A.K. Samal, T. Pradeep, and R. Philip, Chem. Phys. Lett. 485, 326 (2010).CrossRef C.S. Suchand Sandeep, A.K. Samal, T. Pradeep, and R. Philip, Chem. Phys. Lett. 485, 326 (2010).CrossRef
47.
Zurück zum Zitat S. Sivaramakrishnan, V.S. Muthukumar, S.S. Sai, K. Venkataramaniah, J. Reppert, A.M. Rao, M. Anija, R. Philip, and N. Kuthirummal, Appl. Phys. Lett. 91, 093104 (2007).CrossRef S. Sivaramakrishnan, V.S. Muthukumar, S.S. Sai, K. Venkataramaniah, J. Reppert, A.M. Rao, M. Anija, R. Philip, and N. Kuthirummal, Appl. Phys. Lett. 91, 093104 (2007).CrossRef
48.
Zurück zum Zitat J.J. Thomas, S. Krishnan, K. Sridharan, R. Philip, and N. Kalarikkal, Mater. Res. Bull. 47, 1855 (2012).CrossRef J.J. Thomas, S. Krishnan, K. Sridharan, R. Philip, and N. Kalarikkal, Mater. Res. Bull. 47, 1855 (2012).CrossRef
49.
Zurück zum Zitat C. Meng, S.-L. Yu, H.-Q. Wang, Y. Cao, L.-M. Tong, W.-T. Liu, and Y.-R. Shen, Light Sci. Appl. 4, e348 (2015).CrossRef C. Meng, S.-L. Yu, H.-Q. Wang, Y. Cao, L.-M. Tong, W.-T. Liu, and Y.-R. Shen, Light Sci. Appl. 4, e348 (2015).CrossRef
50.
Zurück zum Zitat R. Kumar, A. Kumar, N. Verma, R. Philip, and B. Sahoo, Phys. Chem. Chem. Phys. 22, 27224 (2020).CrossRef R. Kumar, A. Kumar, N. Verma, R. Philip, and B. Sahoo, Phys. Chem. Chem. Phys. 22, 27224 (2020).CrossRef
51.
Zurück zum Zitat M.C. Divyasree, E. Shiju, J. Francis, P.T. Anusha, S.V. Rao, and K. Chandrasekharan, Mater. Chem. Phys. 197, 208 (2017).CrossRef M.C. Divyasree, E. Shiju, J. Francis, P.T. Anusha, S.V. Rao, and K. Chandrasekharan, Mater. Chem. Phys. 197, 208 (2017).CrossRef
52.
Zurück zum Zitat R. Kumar, A. Kumar, N. Verma, V. Khopkar, R. Philip, and B. Sahoo, ACS Appl. Nano Mater. 3, 8618 (2020).CrossRef R. Kumar, A. Kumar, N. Verma, V. Khopkar, R. Philip, and B. Sahoo, ACS Appl. Nano Mater. 3, 8618 (2020).CrossRef
53.
Zurück zum Zitat S. Anandan, S. Manoharan, N.K.S. Narendran, T.C.S. Girisun, and A.M. Asiri, Opt. Mater. 85, 18 (2018).CrossRef S. Anandan, S. Manoharan, N.K.S. Narendran, T.C.S. Girisun, and A.M. Asiri, Opt. Mater. 85, 18 (2018).CrossRef
54.
Zurück zum Zitat R. Kumar, A. Kumar, N. Verma, A.V. Anupama, R. Philip, and B. Sahoo, Carbon 153, 545 (2019).CrossRef R. Kumar, A. Kumar, N. Verma, A.V. Anupama, R. Philip, and B. Sahoo, Carbon 153, 545 (2019).CrossRef
Metadaten
Titel
Excited-State Absorption Assisted Optical Limiting Action of Potassium Dihydrogen Phosphate (KDP)–Polyethylene Oxide (PEO) Electrospun Nanofibers
verfasst von
C. Yogeswari
T. C. Sabari Girisun
R. Nagalakshmi
Publikationsdatum
26.05.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 8/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08996-4

Weitere Artikel der Ausgabe 8/2021

Journal of Electronic Materials 8/2021 Zur Ausgabe

Neuer Inhalt