Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 5-8/2019

18.07.2019 | ORIGINAL ARTICLE

Exergy efficiency optimization model of motorized spindle system for high-speed dry hobbing

verfasst von: Benjie Li, Huajun Cao, Hu Liu, Dan Zeng, Erheng Chen

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 5-8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High-speed dry hobbing (HSDH) has been regarded as an environmentally benign gear machining technique. Current research on energy efficiency of machine tool focuses on the energy efficiency for workpiece material removal but rarely involves the energy consumption required to control thermal stability. Due to the fact that thermal effect dominates the machining accuracy and accuracy consistency, especially in the dry machining process, the energy consumption for thermal stability control should be taken as useful energy consumption. In view of this, by taking the motorized spindle system (MSS) as the study objective, which is a core subsystem of machine tool enabling HSDH and characterizes intensive and inefficient energy consumption, an exergy-based method is proposed to evaluate the comprehensive energy efficiency of MSS. Furthermore, an exergy efficiency optimization model is proposed to maximize total exergy efficiency and minimize average temperature of MSS. A solution method integrating Pareto Dominant-based Multi-objective Simulated Annealing (PDMOSA) and Technique for Order of Preference by Similarity to an Ideal Solution (TOPSIS) is proposed to search the best solution of the optimization model. A case study is introduced to validate the proposed model and a final optimal solution is obtained at the total exergy efficiency of 53.5% with balanced temperature of 35.4 °C. The cooling water in MSS is identified to be a dominant factor that affects total exergy destruction. The presented model can give a reference to select appropriate process parameters of MSS for green and precision machining.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Duflou JR, Sutherland JW, Dornfeld D, Herrmann C, Jeswiet J, Kara S, Hauschild M, Kellens K (2012) Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann Manuf Technol 61(2):587–609 Duflou JR, Sutherland JW, Dornfeld D, Herrmann C, Jeswiet J, Kara S, Hauschild M, Kellens K (2012) Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann Manuf Technol 61(2):587–609
2.
Zurück zum Zitat Cai W, Liu F, Xie J, Liu PJ, Tuo JB (2017) A tool for assessing the energy demand and efficiency of machining systems: Energy benchmarking. Energy 138:332–347 Cai W, Liu F, Xie J, Liu PJ, Tuo JB (2017) A tool for assessing the energy demand and efficiency of machining systems: Energy benchmarking. Energy 138:332–347
4.
Zurück zum Zitat Zhao GY, Liu ZY, He Y, Cao HJ, Guo YB (2017) Energy consumption in machining: classification, prediction, and reduction strategy. Energy 133:142–157 Zhao GY, Liu ZY, He Y, Cao HJ, Guo YB (2017) Energy consumption in machining: classification, prediction, and reduction strategy. Energy 133:142–157
5.
Zurück zum Zitat Cui YF, Geng ZQ, Zhu QX, Han YM (2017) Review: multi-objective optimization methods and application in energy saving. Energy 125:681–704 Cui YF, Geng ZQ, Zhu QX, Han YM (2017) Review: multi-objective optimization methods and application in energy saving. Energy 125:681–704
6.
Zurück zum Zitat Zhou LR, Li JF, Li FY, Meng Q, Li J, Xu XS (2016) Energy consumption model and energy efficiency of machine tools: a comprehensive literature review. J Clean Prod 112:3721–3734 Zhou LR, Li JF, Li FY, Meng Q, Li J, Xu XS (2016) Energy consumption model and energy efficiency of machine tools: a comprehensive literature review. J Clean Prod 112:3721–3734
7.
Zurück zum Zitat Kara S, Li W (2011) Unit process energy consumption models for material removal processes. CIRP Ann Manuf Technol 60(1):37–40 Kara S, Li W (2011) Unit process energy consumption models for material removal processes. CIRP Ann Manuf Technol 60(1):37–40
8.
Zurück zum Zitat Balogun VA, Edem IF, Adekunle AA, Mativenga PT (2016) Specific energy based evaluation of machining efficiency. J Clean Prod 116:187–197 Balogun VA, Edem IF, Adekunle AA, Mativenga PT (2016) Specific energy based evaluation of machining efficiency. J Clean Prod 116:187–197
9.
Zurück zum Zitat Tuo JB, Liu F, Liu PJ, Zhang H, Cai W (2018) Energy efficiency evaluation for machining systems through virtual part. Energy 159:172–183 Tuo JB, Liu F, Liu PJ, Zhang H, Cai W (2018) Energy efficiency evaluation for machining systems through virtual part. Energy 159:172–183
10.
Zurück zum Zitat Ghosh S, Chattopadhyay AB, Paul S (2008) Modelling of specific energy requirement during high-efficiency deep grinding. Int J Mach Tools Manuf 48:1242–1253 Ghosh S, Chattopadhyay AB, Paul S (2008) Modelling of specific energy requirement during high-efficiency deep grinding. Int J Mach Tools Manuf 48:1242–1253
11.
Zurück zum Zitat Wang LH, Wang W, Liu DW (2017) Dynamic feature based adaptive process planning for energy-efficient NC machining. CIRP Ann Manuf Technol 66:441–444 Wang LH, Wang W, Liu DW (2017) Dynamic feature based adaptive process planning for energy-efficient NC machining. CIRP Ann Manuf Technol 66:441–444
12.
Zurück zum Zitat Xiao QG, Li CB, Tang Y, Li LL, Li L (2019) A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning. Energy 166:142–156 Xiao QG, Li CB, Tang Y, Li LL, Li L (2019) A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning. Energy 166:142–156
13.
Zurück zum Zitat Cao HJ, Zhu LB, Li XG, Chen P, Chen YP (2016) Thermal error compensation of dry hobbing machine tool considering workpiece thermal deformation. Int J Adv Manuf Technol 86(5-8):1739–1751 Cao HJ, Zhu LB, Li XG, Chen P, Chen YP (2016) Thermal error compensation of dry hobbing machine tool considering workpiece thermal deformation. Int J Adv Manuf Technol 86(5-8):1739–1751
14.
Zurück zum Zitat Mayr J, Jedrzejewski J, Uhlmann E, Donmez MA, Knapp W, Hartig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Wurz T, Wegener K (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791 Mayr J, Jedrzejewski J, Uhlmann E, Donmez MA, Knapp W, Hartig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Wurz T, Wegener K (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791
15.
Zurück zum Zitat Gupta K, Laubscher RF, Davim JP, Jain NK (2016) Recent developments in sustainable manufacturing of gears: a review. J Clean Prod 112:3320–3330 Gupta K, Laubscher RF, Davim JP, Jain NK (2016) Recent developments in sustainable manufacturing of gears: a review. J Clean Prod 112:3320–3330
16.
Zurück zum Zitat Yang X, Cao HJ, Zhu LB, Li BJ (2017) A 3D chip geometry driven predictive method for heat-loading performance of hob tooth in high-speed dry hobbing. Int J Adv Manuf Technol 93(5-8):1583–1594 Yang X, Cao HJ, Zhu LB, Li BJ (2017) A 3D chip geometry driven predictive method for heat-loading performance of hob tooth in high-speed dry hobbing. Int J Adv Manuf Technol 93(5-8):1583–1594
17.
Zurück zum Zitat Zhu LB, Cao HJ, Zeng D, Yang X, Li BJ (2017) Multi-variable driving thermal energy control model of dry hobbing machine tool. Int J Adv Manuf Technol 92(1-4):259–275 Zhu LB, Cao HJ, Zeng D, Yang X, Li BJ (2017) Multi-variable driving thermal energy control model of dry hobbing machine tool. Int J Adv Manuf Technol 92(1-4):259–275
18.
Zurück zum Zitat Albertelli P (2017) Energy saving opportunities in direct drive machine tool spindles. J Clean Prod 165:855–873 Albertelli P (2017) Energy saving opportunities in direct drive machine tool spindles. J Clean Prod 165:855–873
19.
Zurück zum Zitat Abele E, Altintas Y, Brecher C (2010) Machine tool spindle units. CIRP Ann Manuf Technol 59(2):781–802 Abele E, Altintas Y, Brecher C (2010) Machine tool spindle units. CIRP Ann Manuf Technol 59(2):781–802
20.
Zurück zum Zitat Wegener K, Mayr J, Merklein M, Behrens BA, Aoyama T, Sulitka M, Fleischer J, Groche P, Kaftanoglu B, Jochum N, Mohring HC (2017) Fluid elements in machine tools. CIRP Ann Manuf Technol 66(2):611–634 Wegener K, Mayr J, Merklein M, Behrens BA, Aoyama T, Sulitka M, Fleischer J, Groche P, Kaftanoglu B, Jochum N, Mohring HC (2017) Fluid elements in machine tools. CIRP Ann Manuf Technol 66(2):611–634
21.
Zurück zum Zitat Li Y, Zhao WH, Lan SH, Ni J, Wu WW, Lu BH (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95:20–38 Li Y, Zhao WH, Lan SH, Ni J, Wu WW, Lu BH (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95:20–38
22.
Zurück zum Zitat Creighton E, Honegger A, Tulsian A, Mukhopadhyay D (2010) Analysis of thermal errors in a high-speed micro-milling spindle. Int J Mach Tools Manuf 50:386–393 Creighton E, Honegger A, Tulsian A, Mukhopadhyay D (2010) Analysis of thermal errors in a high-speed micro-milling spindle. Int J Mach Tools Manuf 50:386–393
23.
Zurück zum Zitat Cengel YA, Boles MA (2010) Thermodynamics: an engineering approach (7th). McGraw-Hill Education, New York Cengel YA, Boles MA (2010) Thermodynamics: an engineering approach (7th). McGraw-Hill Education, New York
24.
Zurück zum Zitat Hosseinzadeh M, Sardarabadi M, Passandideh-Fard M (2018) Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. Energy 147:636–647 Hosseinzadeh M, Sardarabadi M, Passandideh-Fard M (2018) Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. Energy 147:636–647
25.
Zurück zum Zitat Koroglu T, Sogut OS (2018) Conventional and advanced exergy analyses of a marine steam power plant. Energy 163:392–403 Koroglu T, Sogut OS (2018) Conventional and advanced exergy analyses of a marine steam power plant. Energy 163:392–403
26.
Zurück zum Zitat Zhang Q, Yi H, Yu Z, Gao J, Wang X, Lin H, Shen B (2018) Energy-exergy analysis and energy efficiency improvement of coal-fired industrial boilers based on thermal test data. Appl Therm Eng 144:614–627 Zhang Q, Yi H, Yu Z, Gao J, Wang X, Lin H, Shen B (2018) Energy-exergy analysis and energy efficiency improvement of coal-fired industrial boilers based on thermal test data. Appl Therm Eng 144:614–627
27.
Zurück zum Zitat Bühler F, Nguyen TV, Jensen JK, Holm FM, Elmegaard B (2018) Energy, exergy and advanced exergy analysis of a milk processing factory. Energy 162:576–592 Bühler F, Nguyen TV, Jensen JK, Holm FM, Elmegaard B (2018) Energy, exergy and advanced exergy analysis of a milk processing factory. Energy 162:576–592
28.
Zurück zum Zitat Sharifzadeh M, Ghazikhani M, Niazmand H (2018) Temporal exergy analysis of adsorption cooling system by developing non-flow exergy function. Appl Therm Eng 139:409–418 Sharifzadeh M, Ghazikhani M, Niazmand H (2018) Temporal exergy analysis of adsorption cooling system by developing non-flow exergy function. Appl Therm Eng 139:409–418
29.
Zurück zum Zitat Fellaou S, Bounahmidi T (2018) Analyzing thermodynamic improvement potential of a selected cement manufacturing process: advanced exergy analysis. Energy 154:190–200 Fellaou S, Bounahmidi T (2018) Analyzing thermodynamic improvement potential of a selected cement manufacturing process: advanced exergy analysis. Energy 154:190–200
30.
Zurück zum Zitat Okwudire C, Rodgers J (2013) Design and control of a novel hybrid feed drive for high performance and energy efficient machining. CIRP Ann Manuf Technol 62(1):391–394 Okwudire C, Rodgers J (2013) Design and control of a novel hybrid feed drive for high performance and energy efficient machining. CIRP Ann Manuf Technol 62(1):391–394
31.
Zurück zum Zitat Chien CH, Jang JY (2008) 3-D numerical and experimental analysis of a built-in motorized high-speed spindle with helical water cooling channel. Appl Therm Eng 28(17-18):2327–2336 Chien CH, Jang JY (2008) 3-D numerical and experimental analysis of a built-in motorized high-speed spindle with helical water cooling channel. Appl Therm Eng 28(17-18):2327–2336
32.
Zurück zum Zitat Bossmanns B, Tu JF (2001) A power flow model for high speed motorized spindles—heat generation characterization. J Manuf Sci Eng 123:494–505 Bossmanns B, Tu JF (2001) A power flow model for high speed motorized spindles—heat generation characterization. J Manuf Sci Eng 123:494–505
33.
Zurück zum Zitat Bossmanns B, Tu JF (1999) A thermal model for high speed motorized spindles. Int J Mach Tools Manuf 39(9):1345–1366 Bossmanns B, Tu JF (1999) A thermal model for high speed motorized spindles. Int J Mach Tools Manuf 39(9):1345–1366
34.
Zurück zum Zitat Ma C, Yang J, Zhao L, Mei X, Shi H (2015) Simulation and experimental study on the thermally induced deformations of high-speed spindle system. Appl Therm Eng 86:251–268 Ma C, Yang J, Zhao L, Mei X, Shi H (2015) Simulation and experimental study on the thermally induced deformations of high-speed spindle system. Appl Therm Eng 86:251–268
35.
Zurück zum Zitat Kaushik SC, Manikandan S, Hans R (2015) Energy and exergy analysis of thermoelectric heat pump system. Int J Heat Mass Transf 86:843–852 Kaushik SC, Manikandan S, Hans R (2015) Energy and exergy analysis of thermoelectric heat pump system. Int J Heat Mass Transf 86:843–852
36.
Zurück zum Zitat Avram OI, Xirouchakis P (2011) Evaluating the use phase energy requirements of a machine tool system. J Clean Prod 19:699–711 Avram OI, Xirouchakis P (2011) Evaluating the use phase energy requirements of a machine tool system. J Clean Prod 19:699–711
37.
Zurück zum Zitat Lv J, Tang R, Tang W, Liu Y, Zhang Y, Jia S (2017) An investigation into reducing the spindle acceleration energy consumption of machine tools. J Clean Prod 143:794–803 Lv J, Tang R, Tang W, Liu Y, Zhang Y, Jia S (2017) An investigation into reducing the spindle acceleration energy consumption of machine tools. J Clean Prod 143:794–803
38.
Zurück zum Zitat Zhu LB, Cao HJ, Huang HH, Yang X (2017) Exergy analysis and multi-objective optimization of air cooling system for dry machining. Int J Adv Manuf Technol 93(9-12):3175–3188 Zhu LB, Cao HJ, Huang HH, Yang X (2017) Exergy analysis and multi-objective optimization of air cooling system for dry machining. Int J Adv Manuf Technol 93(9-12):3175–3188
39.
Zurück zum Zitat Pusavec F, Krajnik P, Kopac J (2010) Transition to sustainable production—part I: application on machining technologies. J Clean Prod 18:174–184 Pusavec F, Krajnik P, Kopac J (2010) Transition to sustainable production—part I: application on machining technologies. J Clean Prod 18:174–184
40.
Zurück zum Zitat Weber J, Weber J, Shabi L, Lohse H (2016) Energy, power and heat flow of the cooling and fluid systems in a cutting machine tool. Procedia Cirp 46:99–102 Weber J, Weber J, Shabi L, Lohse H (2016) Energy, power and heat flow of the cooling and fluid systems in a cutting machine tool. Procedia Cirp 46:99–102
41.
Zurück zum Zitat Yang X, Cao H, Li B, Jafar S, Zhu L (2018) A thermal energy balance optimization model of cutting space enabling environmentally benign dry hobbing. J Clean Prod 172:2323–2335 Yang X, Cao H, Li B, Jafar S, Zhu L (2018) A thermal energy balance optimization model of cutting space enabling environmentally benign dry hobbing. J Clean Prod 172:2323–2335
42.
Zurück zum Zitat Chen XZ, Li CB, Jin Y, Li L (2018) Optimization of cutting parameters with a sustainable consideration of electrical energy and embodied energy of materials. Int J Adv Manuf Technol 96(1-4):775–788 Chen XZ, Li CB, Jin Y, Li L (2018) Optimization of cutting parameters with a sustainable consideration of electrical energy and embodied energy of materials. Int J Adv Manuf Technol 96(1-4):775–788
43.
Zurück zum Zitat Balogun VA, Edem IF, Gu H, Mativenga PT (2018) Energy centric selection of machining conditions for minimum cost. Energy 164:655–663 Balogun VA, Edem IF, Gu H, Mativenga PT (2018) Energy centric selection of machining conditions for minimum cost. Energy 164:655–663
44.
Zurück zum Zitat Li BJ, Cao HJ, Yang X, Jafar S, Zeng D (2018) Thermal energy balance control model of motorized spindle system enabling high-speed dry hobbing process. J Manuf Process 35:29–39 Li BJ, Cao HJ, Yang X, Jafar S, Zeng D (2018) Thermal energy balance control model of motorized spindle system enabling high-speed dry hobbing process. J Manuf Process 35:29–39
45.
Zurück zum Zitat Gunay M, Aslan E, Korkut I, Seker U (2004) Investigation of the effect of rake angle on main cutting force. Int J Mach Tools Manuf 44(9):953–959 Gunay M, Aslan E, Korkut I, Seker U (2004) Investigation of the effect of rake angle on main cutting force. Int J Mach Tools Manuf 44(9):953–959
46.
Zurück zum Zitat Suman B (2004) Study of simulated annealing based algorithms for multiobjective optimization of a constrained problem. Comput Chem Eng 28(9):1849–1871 Suman B (2004) Study of simulated annealing based algorithms for multiobjective optimization of a constrained problem. Comput Chem Eng 28(9):1849–1871
47.
Zurück zum Zitat Sahin R, Turkbey O (2009) A simulated annealing algorithm to find approximate Pareto optimal solutions for the multi-objective facility layout problem. Int J Adv Manuf Technol 41(9-10):1003–1018 Sahin R, Turkbey O (2009) A simulated annealing algorithm to find approximate Pareto optimal solutions for the multi-objective facility layout problem. Int J Adv Manuf Technol 41(9-10):1003–1018
48.
Zurück zum Zitat Li LL, Li CB, Ying T, Li L (2017) An integrated approach of process planning and cutting parameter optimization for energy-aware CNC Machining. J Clean Prod 162:458–473 Li LL, Li CB, Ying T, Li L (2017) An integrated approach of process planning and cutting parameter optimization for energy-aware CNC Machining. J Clean Prod 162:458–473
49.
Zurück zum Zitat Chyu CC, Chang WS (2011) Optimizing fuzzy makespan and tardiness for unrelated parallel machine scheduling with archived metaheuristics. Int J Adv Manuf Technol 57(5-8):763–776 Chyu CC, Chang WS (2011) Optimizing fuzzy makespan and tardiness for unrelated parallel machine scheduling with archived metaheuristics. Int J Adv Manuf Technol 57(5-8):763–776
50.
Zurück zum Zitat Hoseini P, Shayesteh MG (2013) Efficient contrast enhancement of images using hybrid ant colony optimisation, genetic algorithm, and simulated annealing. Digit Signal Process 23(3):879–893MathSciNet Hoseini P, Shayesteh MG (2013) Efficient contrast enhancement of images using hybrid ant colony optimisation, genetic algorithm, and simulated annealing. Digit Signal Process 23(3):879–893MathSciNet
51.
Zurück zum Zitat Yue ZL (2011) A method for group decision-making based on determining weights of decision makers using TOPSIS. Appl Math Model 35(4):1926–1936MathSciNetMATH Yue ZL (2011) A method for group decision-making based on determining weights of decision makers using TOPSIS. Appl Math Model 35(4):1926–1936MathSciNetMATH
52.
Zurück zum Zitat Shirazi A, Najafi B, Aminyavari M, Rinaldi F, Taylor RA (2014) Thermal-economic-environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling. Energy 69:212–226 Shirazi A, Najafi B, Aminyavari M, Rinaldi F, Taylor RA (2014) Thermal-economic-environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling. Energy 69:212–226
53.
Zurück zum Zitat Sayyaadi H, Mehrabipour R (2012) Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger. Energy 38:362–375 Sayyaadi H, Mehrabipour R (2012) Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger. Energy 38:362–375
54.
Zurück zum Zitat Lin YK, Yeh CT (2012) Multi-objective optimization for stochastic computer networks using NSGA-II and TOPSIS. Eur J Oper Res 218(3):735–746MathSciNetMATH Lin YK, Yeh CT (2012) Multi-objective optimization for stochastic computer networks using NSGA-II and TOPSIS. Eur J Oper Res 218(3):735–746MathSciNetMATH
55.
Zurück zum Zitat Tavana M, Li Z, Mobin M, Komaki M, Teymourian E (2016) Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS. Expert Syst Appl 50:17–39 Tavana M, Li Z, Mobin M, Komaki M, Teymourian E (2016) Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS. Expert Syst Appl 50:17–39
Metadaten
Titel
Exergy efficiency optimization model of motorized spindle system for high-speed dry hobbing
verfasst von
Benjie Li
Huajun Cao
Hu Liu
Dan Zeng
Erheng Chen
Publikationsdatum
18.07.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 5-8/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04134-x

Weitere Artikel der Ausgabe 5-8/2019

The International Journal of Advanced Manufacturing Technology 5-8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.