Skip to main content

2017 | OriginalPaper | Buchkapitel

Exhaust Heat Recovery Options for Diesel Locomotives

verfasst von : Gaurav Tripathi, Atul Dhar

Erschienen in: Locomotives and Rail Road Transportation

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Even by conservative estimates more than 20% fuel energy from internal combustion engines is wasted as exhaust heat. Currently organic Rankine cycles and thermoelectric generators are most widely investigated options for automobile exhaust heat recovery. Use of thermoelectric generators for recovery of exhaust heat in automobiles at concept level started few decades ago. Major advantages of this technology over Rankine cycles are little noise and vibration, high durability, environmental friendliness, and low maintenance cost for converting low quality thermal energy directly into high quality electrical energy. Major challenges are lower efficiency (~8%), drop in efficiency at lower temperatures, performance optimization in synchronization with multiple constraints of after-treatment devices, silencer, back pressure reduction, turbo-charging etc. Larger size of diesel locomotives compared with space available for automobile engine’s mounting on vehicles makes the installation of exhaust heat recovery system in diesel locomotives more practical. In this paper, feasibility and suitability of various exhaust heat energy recovery methods for diesel locomotives has been discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang T, Zhang Y, Peng Z, Shu G (2011) A review of researches on thermal exhaust heat recovery with rankine cycle. Renew Sustain Energy Rev 15:2862–2871CrossRef Wang T, Zhang Y, Peng Z, Shu G (2011) A review of researches on thermal exhaust heat recovery with rankine cycle. Renew Sustain Energy Rev 15:2862–2871CrossRef
2.
Zurück zum Zitat Endo T, Kawajiri S, Kojima Y, Takahashi K, Baba T, Ibaraki S, Takahashi T, Shinohara M (2007) Study on maximizing exergy in automotive engines. SAE Technical Paper. doi:10.4271/2007-01-0257 Endo T, Kawajiri S, Kojima Y, Takahashi K, Baba T, Ibaraki S, Takahashi T, Shinohara M (2007) Study on maximizing exergy in automotive engines. SAE Technical Paper. doi:10.​4271/​2007-01-0257
3.
Zurück zum Zitat Shu G, Liang Y, Wei H, Tian H, Zhao J, Liu L (2013) A review of waste heat recovery on two-stroke IC engine aboard ships. Renew Sustain Energy Rev 19:385–401CrossRef Shu G, Liang Y, Wei H, Tian H, Zhao J, Liu L (2013) A review of waste heat recovery on two-stroke IC engine aboard ships. Renew Sustain Energy Rev 19:385–401CrossRef
4.
Zurück zum Zitat Zhang YQ, Wu YT, Xia GD, Ma CF, Ji WN, Liu SW, Yang K, Yang FB (2014) Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine. Energy xxx 1–10 Zhang YQ, Wu YT, Xia GD, Ma CF, Ji WN, Liu SW, Yang K, Yang FB (2014) Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine. Energy xxx 1–10
5.
Zurück zum Zitat Miller AR, Hess KS, Barnes DL, Erickson TL (2007) System design of a large fuel cell hybrid locomotive. J Power Sources 173:935–942CrossRef Miller AR, Hess KS, Barnes DL, Erickson TL (2007) System design of a large fuel cell hybrid locomotive. J Power Sources 173:935–942CrossRef
6.
Zurück zum Zitat Wang LW, Wang RZ, Wu JY, Wang K, Wang SG (2004) Adsorption ice makers for fishing boats driven by the exhaust heat from diesel engine: choice of adsorption pair. Energy Convers Manag 45:2043–2057CrossRef Wang LW, Wang RZ, Wu JY, Wang K, Wang SG (2004) Adsorption ice makers for fishing boats driven by the exhaust heat from diesel engine: choice of adsorption pair. Energy Convers Manag 45:2043–2057CrossRef
7.
Zurück zum Zitat Jiangzhou S, Wang RZ, Lu YZ, Xu YX, Wu JY, Li ZH (2003) Locomotive driver cabin adsorption air conditioner. Renew Energy 28:1659–1670CrossRef Jiangzhou S, Wang RZ, Lu YZ, Xu YX, Wu JY, Li ZH (2003) Locomotive driver cabin adsorption air conditioner. Renew Energy 28:1659–1670CrossRef
8.
Zurück zum Zitat Ali MS, Chakraborty A (2015) Thermodynamic modeling and performance study of an engine waste heat driven adsorption cooling for automotive air-conditioning. Appl Therm Eng 90:54–63CrossRef Ali MS, Chakraborty A (2015) Thermodynamic modeling and performance study of an engine waste heat driven adsorption cooling for automotive air-conditioning. Appl Therm Eng 90:54–63CrossRef
9.
Zurück zum Zitat Zegenhagen MT, Ziegler F (2015) Feasibility analysis of an exhaust gas waste heat driven jet-ejector cooling system for charge air cooling of turbocharged gasoline engines. Appl Energy 160:221–230CrossRef Zegenhagen MT, Ziegler F (2015) Feasibility analysis of an exhaust gas waste heat driven jet-ejector cooling system for charge air cooling of turbocharged gasoline engines. Appl Energy 160:221–230CrossRef
10.
Zurück zum Zitat Rego AT, Hanriot SM, Oliveria AF, Brito, Rego TFU (2014) Automotive exhaust gas flow control for an ammonia-water absorption refrigeration system. Appl Thermal Eng 64:101–107 Rego AT, Hanriot SM, Oliveria AF, Brito, Rego TFU (2014) Automotive exhaust gas flow control for an ammonia-water absorption refrigeration system. Appl Thermal Eng 64:101–107
11.
Zurück zum Zitat Wang RZ, Oliveira RG (2006) Adsorption refrigeration—an efficient way to make good use of waste heat and solar energy. Prog Energy Combust Sci 32:424–458CrossRef Wang RZ, Oliveira RG (2006) Adsorption refrigeration—an efficient way to make good use of waste heat and solar energy. Prog Energy Combust Sci 32:424–458CrossRef
12.
Zurück zum Zitat Stobart R, Weerasinghe R (2006) Heat recovery and bottoming cycles for SI and CI engines—a perspective. In: SAE paper 2006-01-0662 Stobart R, Weerasinghe R (2006) Heat recovery and bottoming cycles for SI and CI engines—a perspective. In: SAE paper 2006-01-0662
13.
Zurück zum Zitat Yamada N, Mohamad MNA (2010) Efficiency of hydrogen internal combustion engine combined with open steam Rankine cycle recovering water and waste heat. Int J Hydrogen Energy 35:1430–1442CrossRef Yamada N, Mohamad MNA (2010) Efficiency of hydrogen internal combustion engine combined with open steam Rankine cycle recovering water and waste heat. Int J Hydrogen Energy 35:1430–1442CrossRef
14.
Zurück zum Zitat Chammas RE, Clodic D (2005) Combined cycle for hybrid vehicles. In: SAE paper 2005-01-1171 Chammas RE, Clodic D (2005) Combined cycle for hybrid vehicles. In: SAE paper 2005-01-1171
15.
Zurück zum Zitat Srinivasan KK, Mago PJ, Zdaniuk GJ, Chamra LM, Midkiff KC (2008) Improving the efficiency of the advanced injection low pilot ignited natural gas engine using organic Rankine cycles. J Energy Resour Technol Trans ASME 130:0222011–7 Srinivasan KK, Mago PJ, Zdaniuk GJ, Chamra LM, Midkiff KC (2008) Improving the efficiency of the advanced injection low pilot ignited natural gas engine using organic Rankine cycles. J Energy Resour Technol Trans ASME 130:0222011–7
16.
Zurück zum Zitat Vaja I, Gambarotta A (2010) Internal combustion engine (ICE) bottoming with organic Rankine cycles (ORCs). Energy 35:1084–1093CrossRef Vaja I, Gambarotta A (2010) Internal combustion engine (ICE) bottoming with organic Rankine cycles (ORCs). Energy 35:1084–1093CrossRef
17.
Zurück zum Zitat Srinivasan KK, Mago PJ, Zdaniuk GJ, Chamra LM, Midkiff KC (2008) Improving the efficiency of the advanced injection low pilot ignited natural gas engine using organic Rankine cycles. J Energy Resour Technol Trans ASME 130:0222011an Srinivasan KK, Mago PJ, Zdaniuk GJ, Chamra LM, Midkiff KC (2008) Improving the efficiency of the advanced injection low pilot ignited natural gas engine using organic Rankine cycles. J Energy Resour Technol Trans ASME 130:0222011an
18.
Zurück zum Zitat Vaja I, Gambarotta A (2010) Internal combustion engine (ICE) bottoming with organic Rankine cycles (ORCs). Energy 35:1084 Vaja I, Gambarotta A (2010) Internal combustion engine (ICE) bottoming with organic Rankine cycles (ORCs). Energy 35:1084
19.
Zurück zum Zitat Chen SK, Lin R (1983) A review of engine advanced cycle and Rankine bottoming cycle and their loss evaluations. In: SAE paper 830124 Chen SK, Lin R (1983) A review of engine advanced cycle and Rankine bottoming cycle and their loss evaluations. In: SAE paper 830124
20.
Zurück zum Zitat Liu BT, Chien KH, Wang CC (2004) Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 29:1207–1217CrossRef Liu BT, Chien KH, Wang CC (2004) Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 29:1207–1217CrossRef
21.
Zurück zum Zitat Wang ZQ, Zhou NJ, Wang XY (2012) Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat. Energy 40:107–115CrossRef Wang ZQ, Zhou NJ, Wang XY (2012) Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat. Energy 40:107–115CrossRef
22.
Zurück zum Zitat Li Y (2012) Analysis of low temperature of organic Rankine cycle for solar applications. Lehigh University Li Y (2012) Analysis of low temperature of organic Rankine cycle for solar applications. Lehigh University
23.
Zurück zum Zitat Ko HJ, Kim SW, Han CH, Kim KH (2013) Effects of source temperature on thermodynamic performance of transcritical organic cycle. Int J Mater Mech Manuf 1(1) Ko HJ, Kim SW, Han CH, Kim KH (2013) Effects of source temperature on thermodynamic performance of transcritical organic cycle. Int J Mater Mech Manuf 1(1)
24.
Zurück zum Zitat Saiai P, Chaitep S, Bundhurat D, Watanawanyoo P (2014) Effect of vapor generator on organic Rankine cycle for low temperature heat source. IJETAE 4(1) Saiai P, Chaitep S, Bundhurat D, Watanawanyoo P (2014) Effect of vapor generator on organic Rankine cycle for low temperature heat source. IJETAE 4(1)
25.
Zurück zum Zitat Sami SM (2008) Energy and exergy analysis of an efficient organic Rankine cycle for low temperature power generation. Int J Ambient Energy 29(1) Sami SM (2008) Energy and exergy analysis of an efficient organic Rankine cycle for low temperature power generation. Int J Ambient Energy 29(1)
27.
Zurück zum Zitat Deethayat T, Kiatsiriroat T (2015) Performance analysis of an organic Rankine cycle with internal heat exchanger having zeotropic working fluid. Case Stud Thermal Eng 6:155–161CrossRef Deethayat T, Kiatsiriroat T (2015) Performance analysis of an organic Rankine cycle with internal heat exchanger having zeotropic working fluid. Case Stud Thermal Eng 6:155–161CrossRef
28.
Zurück zum Zitat Adhouri M, Ahmadi MH, Feidt M (2014) Performance analysis of organic Rankine cycle integrated with a parabolic through solar collector. In: World Sustainability Forum 2014—Conference Proceedings Paper Adhouri M, Ahmadi MH, Feidt M (2014) Performance analysis of organic Rankine cycle integrated with a parabolic through solar collector. In: World Sustainability Forum 2014—Conference Proceedings Paper
29.
Zurück zum Zitat Brasz LJ, Bilbow WM (2004) Ranking of working fluids for organic Rankine cycle applications. In: International refrigeration and air conditioning conference, Purdue University Brasz LJ, Bilbow WM (2004) Ranking of working fluids for organic Rankine cycle applications. In: International refrigeration and air conditioning conference, Purdue University
30.
Zurück zum Zitat Gao H, Liu C, He C, Xu X, Wu S, Li Y (2012) Performance supercritical organic Rankine cycle for low grade waste heat recovery. Energies 5:3233–3247. doi:10.3390/en5093233 Gao H, Liu C, He C, Xu X, Wu S, Li Y (2012) Performance supercritical organic Rankine cycle for low grade waste heat recovery. Energies 5:3233–3247. doi:10.​3390/​en5093233
31.
Zurück zum Zitat Darvish K, Ehyaei MA, Atabi F, Rosen MA (2015) Selection of optimum working fluid for organic Rankine cycle by exergy and exergy-economics analyses. Sustainability 7:15362–15383. doi:10.3390/su71115362 Darvish K, Ehyaei MA, Atabi F, Rosen MA (2015) Selection of optimum working fluid for organic Rankine cycle by exergy and exergy-economics analyses. Sustainability 7:15362–15383. doi:10.​3390/​su71115362
32.
Zurück zum Zitat Wang X, Yang Y, Wang M, ZhengYa, Dai Y (2015) Utilization of waste heat from intercooled reheat and recuperated gas turbines for power generation in organic Rankine cycles. Research Gate, Paper ID 28, p 1 Wang X, Yang Y, Wang M, ZhengYa, Dai Y (2015) Utilization of waste heat from intercooled reheat and recuperated gas turbines for power generation in organic Rankine cycles. Research Gate, Paper ID 28, p 1
33.
Zurück zum Zitat Heghmanns A, Beitelschmidt M, Wilbrecht S, Geradts K, Span G (2015) Development and optimization of a TEG-system for the waste heat usage in railway vehicles. Mater Today Proc 2:780–789CrossRef Heghmanns A, Beitelschmidt M, Wilbrecht S, Geradts K, Span G (2015) Development and optimization of a TEG-system for the waste heat usage in railway vehicles. Mater Today Proc 2:780–789CrossRef
34.
Zurück zum Zitat Patil D, Arakerimath RR (2013) A review of thermoelectric generator for waste heat recovery from engine exhaust. IJRAME 1(8):1–9 Patil D, Arakerimath RR (2013) A review of thermoelectric generator for waste heat recovery from engine exhaust. IJRAME 1(8):1–9
35.
Zurück zum Zitat Fairbanks J (2013) Automotive thermoelectric generator and HVAC. Sustainable Transportation, US department of Energy, Energy Efficiency and Renewable Energy Fairbanks J (2013) Automotive thermoelectric generator and HVAC. Sustainable Transportation, US department of Energy, Energy Efficiency and Renewable Energy
36.
Zurück zum Zitat Ramade P, Patil P, Shelar M, Chaudhary S, Yadav S, Trimbake S (2014) Automobile exhaust thermo-electric generator design and performance analysis. IJEATE 4(5) Ramade P, Patil P, Shelar M, Chaudhary S, Yadav S, Trimbake S (2014) Automobile exhaust thermo-electric generator design and performance analysis. IJEATE 4(5)
37.
Zurück zum Zitat Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG High performance bulk thermoelectrics with all-scale hierarchical architectures. Letter. doi:10.1038/nature11439 Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG High performance bulk thermoelectrics with all-scale hierarchical architectures. Letter. doi:10.​1038/​nature11439
38.
Zurück zum Zitat Shi X, Yang J, Salvador JR, Chi M, Cho JY, Wang H, et al (2011) Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 133(20):7837–7846 Shi X, Yang J, Salvador JR, Chi M, Cho JY, Wang H, et al (2011) Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 133(20):7837–7846
39.
Zurück zum Zitat Lu X, Morelli DT (2013) Natural mineral tetrahedrite as a direct source of thermoelectric materials. PhysChemChemPhys 15(16):5762–5766 Lu X, Morelli DT (2013) Natural mineral tetrahedrite as a direct source of thermoelectric materials. PhysChemChemPhys 15(16):5762–5766
40.
Zurück zum Zitat Joshi G, He R, Engber M, Samsonidze G, Pantha T, Dahal H et al (2014) NbFeSb-based p-type half-Heuslers for power generation applications. Energy Environ Sci 7:4070–4076 Joshi G, He R, Engber M, Samsonidze G, Pantha T, Dahal H et al (2014) NbFeSb-based p-type half-Heuslers for power generation applications. Energy Environ Sci 7:4070–4076
41.
Zurück zum Zitat Leavitt FA, Elsner NB, John C Use, application and testing of Hi-Z thermoelectric modules (The Hz-14 is used as an example. The other modules should be evaluated in a similar way.) Bass Hi-Z Technology, Inc Leavitt FA, Elsner NB, John C Use, application and testing of Hi-Z thermoelectric modules (The Hz-14 is used as an example. The other modules should be evaluated in a similar way.) Bass Hi-Z Technology, Inc
42.
Zurück zum Zitat Francesco S, Juergen P (2010) Enhanced locomotive efficiency through waste heat recovery. In: Conference on railway engineering wellington, 2010 Francesco S, Juergen P (2010) Enhanced locomotive efficiency through waste heat recovery. In: Conference on railway engineering wellington, 2010
43.
Zurück zum Zitat Jeihouni Y, Franke M, Lierz K, Tomazic D, Heuser P (2015) Waste heat recovery for locomotive engines using the organic Rankine cycle. In: Proceedings of the ASME 2015 internal combustion engine. In: Division Fall Technical Conference ICEF2015, November 8–11, 2015, Houston, TX, USA Jeihouni Y, Franke M, Lierz K, Tomazic D, Heuser P (2015) Waste heat recovery for locomotive engines using the organic Rankine cycle. In: Proceedings of the ASME 2015 internal combustion engine. In: Division Fall Technical Conference ICEF2015, November 8–11, 2015, Houston, TX, USA
44.
Zurück zum Zitat Filippone C (2014) Diesel-electric locomotive energy recovery and conversion. innovations deserving exploratory analysis (IDEA) programs managed by the Transportation Research Board (2014) Filippone C (2014) Diesel-electric locomotive energy recovery and conversion. innovations deserving exploratory analysis (IDEA) programs managed by the Transportation Research Board (2014)
Metadaten
Titel
Exhaust Heat Recovery Options for Diesel Locomotives
verfasst von
Gaurav Tripathi
Atul Dhar
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3788-7_3

    Premium Partner