Skip to main content
Erschienen in:

01.08.2023

Existence of entropy weak solutions for 1D non-local traffic models with space-discontinuous flux

verfasst von: F. A. Chiarello, H. D. Contreras, L. M. Villada

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dieser Artikel vertieft sich in die Analyse nicht-lokaler Erhaltungsgesetze mit einer einzigen räumlichen Diskontinuität im Fluss, wobei er sich speziell auf Fahrzeugverkehrsmodelle konzentriert. Es führt ein neuartiges numerisches Schema zur Annäherung an Lösungen ein, das die Existenz und Einzigartigkeit schwacher Entropielösungen nachweist. Die Studie hebt die Konvergenz des numerischen Schemas hervor, da die Unterstützung der Kernfunktion gegen Null tendiert, was das Verhalten von Lösungen durch umfassende numerische Simulationen veranschaulicht. Der Aufsatz zeichnet sich besonders durch seine rigorose mathematische Behandlung und praktische Anwendung in der Verkehrsflussdynamik aus.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sopasakis A, Katsoulakis MA (2006) Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics. SIAM J Appl Math 66:921–944MathSciNetCrossRefMATH Sopasakis A, Katsoulakis MA (2006) Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics. SIAM J Appl Math 66:921–944MathSciNetCrossRefMATH
2.
Zurück zum Zitat Lighthill MJ, Whitham GB (1995) On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc R Soc Lond A 229:317–345MathSciNetMATH Lighthill MJ, Whitham GB (1995) On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc R Soc Lond A 229:317–345MathSciNetMATH
4.
Zurück zum Zitat Garavello M, Piccoli B (2006) Traffic flow on networks: conservation laws models, vol 1 of AIMS series on applied mathematics. American Institute of Mathematical Sciences (AIMS), Springfield Garavello M, Piccoli B (2006) Traffic flow on networks: conservation laws models, vol 1 of AIMS series on applied mathematics. American Institute of Mathematical Sciences (AIMS), Springfield
5.
Zurück zum Zitat Coclite GM, Risebro NH (2005) Conservation laws with time dependent discontinuous coefficients. SIAM J Math Anal 36:1293–1309MathSciNetCrossRefMATH Coclite GM, Risebro NH (2005) Conservation laws with time dependent discontinuous coefficients. SIAM J Math Anal 36:1293–1309MathSciNetCrossRefMATH
6.
Zurück zum Zitat Klingenberg C, Risebro NH (1995) Convex conservation laws with discontinuous coefficients. Existence, uniqueness and asymptotic behavior. Commun Partial Differ Equ 20:1959–1990MathSciNetCrossRefMATH Klingenberg C, Risebro NH (1995) Convex conservation laws with discontinuous coefficients. Existence, uniqueness and asymptotic behavior. Commun Partial Differ Equ 20:1959–1990MathSciNetCrossRefMATH
7.
Zurück zum Zitat Amadori D, Shen W (2012) An integro-differential conservation law arising in a model of granular flow. J Hyperbolic Differ Equ 9:105–131MathSciNetCrossRefMATH Amadori D, Shen W (2012) An integro-differential conservation law arising in a model of granular flow. J Hyperbolic Differ Equ 9:105–131MathSciNetCrossRefMATH
9.
Zurück zum Zitat Amadori D, Ha S-Y, Park J (2017) On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation. J Differ Equ 262:978–1022MathSciNetCrossRefMATH Amadori D, Ha S-Y, Park J (2017) On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation. J Differ Equ 262:978–1022MathSciNetCrossRefMATH
10.
Zurück zum Zitat Betancourt F, Bürger R, Karlsen KH, Tory EM (2011) On non-local conservation laws modelling sedimentation. Nonlinearity 24:855–885MathSciNetCrossRefMATH Betancourt F, Bürger R, Karlsen KH, Tory EM (2011) On non-local conservation laws modelling sedimentation. Nonlinearity 24:855–885MathSciNetCrossRefMATH
11.
12.
Zurück zum Zitat Amorim P, Berthelin F, Goudon T (2020) A non-local scalar conservation law describing navigation processes. J Hyperbolic Differ Equ 17:809–841MathSciNetCrossRefMATH Amorim P, Berthelin F, Goudon T (2020) A non-local scalar conservation law describing navigation processes. J Hyperbolic Differ Equ 17:809–841MathSciNetCrossRefMATH
13.
Zurück zum Zitat Blandin S, Goatin P (2016) Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer Math 132:217–241MathSciNetCrossRefMATH Blandin S, Goatin P (2016) Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer Math 132:217–241MathSciNetCrossRefMATH
14.
Zurück zum Zitat Keimer A, Singh M, Veeravalli T (2020) Existence and uniqueness results for a class of nonlocal conservation laws by means of a lax-hopf-type solution formula. J Hyperbolic Differ Equ 17:677–705MathSciNetCrossRefMATH Keimer A, Singh M, Veeravalli T (2020) Existence and uniqueness results for a class of nonlocal conservation laws by means of a lax-hopf-type solution formula. J Hyperbolic Differ Equ 17:677–705MathSciNetCrossRefMATH
15.
Zurück zum Zitat F. A. Chiarello (2021) An overview of non-local traffic flow models. In: Mathematical descriptions of traffic flow: micro, macro and kinetic models, ICIAM2019 SEMA SIMAI, Springer series F. A. Chiarello (2021) An overview of non-local traffic flow models. In: Mathematical descriptions of traffic flow: micro, macro and kinetic models, ICIAM2019 SEMA SIMAI, Springer series
16.
Zurück zum Zitat Chiarello FA, Goatin P (2018) Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM 52:163–180MathSciNetCrossRefMATH Chiarello FA, Goatin P (2018) Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM 52:163–180MathSciNetCrossRefMATH
17.
Zurück zum Zitat Chiarello FA, Goatin P, Villada LM (2020) Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models. Comput Appl Math 39:60MathSciNetCrossRefMATH Chiarello FA, Goatin P, Villada LM (2020) Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models. Comput Appl Math 39:60MathSciNetCrossRefMATH
18.
Zurück zum Zitat Chiarello FA, Friedrich J, Goatin P, Göttlich S, Kolb O (2020) A non-local traffic flow model for 1-to-1 junctions. Eur J Appl Math 31:1–21MathSciNetCrossRefMATH Chiarello FA, Friedrich J, Goatin P, Göttlich S, Kolb O (2020) A non-local traffic flow model for 1-to-1 junctions. Eur J Appl Math 31:1–21MathSciNetCrossRefMATH
19.
Zurück zum Zitat Chien J, Shen W (2019) Stationary wave profiles for nonlocal particle models of traffic flow on rough roads. NoDEA Nonlinear Differ Equ Appl 26:53MathSciNetCrossRefMATH Chien J, Shen W (2019) Stationary wave profiles for nonlocal particle models of traffic flow on rough roads. NoDEA Nonlinear Differ Equ Appl 26:53MathSciNetCrossRefMATH
20.
Zurück zum Zitat Gimse T, Risebro NH (2017) A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit. Commun Math Sci 15:261–287MathSciNetCrossRef Gimse T, Risebro NH (2017) A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit. Commun Math Sci 15:261–287MathSciNetCrossRef
21.
22.
Zurück zum Zitat Holden H, Risebro NH (2018) The continuum limit of Follow-the-Leader models–a short proof. Discret Contin Dyn Syst 38:715–722MathSciNetCrossRefMATH Holden H, Risebro NH (2018) The continuum limit of Follow-the-Leader models–a short proof. Discret Contin Dyn Syst 38:715–722MathSciNetCrossRefMATH
23.
Zurück zum Zitat Di Francesco M, Rosini MD (2015) Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit. Arch Ration Mech Anal 217:831–871MathSciNetCrossRefMATH Di Francesco M, Rosini MD (2015) Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit. Arch Ration Mech Anal 217:831–871MathSciNetCrossRefMATH
24.
Zurück zum Zitat Adimurthi MS, Gowda GV (2005) Optimal entropy solutions for conservation laws with discontinuous flux-functions. J Hyperbolic Differ Equ 2:783–837MathSciNetCrossRefMATH Adimurthi MS, Gowda GV (2005) Optimal entropy solutions for conservation laws with discontinuous flux-functions. J Hyperbolic Differ Equ 2:783–837MathSciNetCrossRefMATH
25.
Zurück zum Zitat Audusse E, Perthame B (2005) Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc R Soc Edinburgh A 135:253–265MathSciNetCrossRefMATH Audusse E, Perthame B (2005) Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc R Soc Edinburgh A 135:253–265MathSciNetCrossRefMATH
26.
Zurück zum Zitat Bürger R, García A, Karlsen K, Towers J (2008) A family of numerical schemes for kinematic flows with discontinuous flux. J Eng Math 60:387–425MathSciNetCrossRefMATH Bürger R, García A, Karlsen K, Towers J (2008) A family of numerical schemes for kinematic flows with discontinuous flux. J Eng Math 60:387–425MathSciNetCrossRefMATH
27.
Zurück zum Zitat Bürger R, Karlsen KH, Towers JD (2009) An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J Numer Anal 47:1684–1712MathSciNetCrossRefMATH Bürger R, Karlsen KH, Towers JD (2009) An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J Numer Anal 47:1684–1712MathSciNetCrossRefMATH
28.
Zurück zum Zitat Garavello M, Natalini R, Piccoli B, Terracina A (2007) Conservation laws with discontinuous flux. Netw Heterog Media 2:159–179MathSciNetCrossRefMATH Garavello M, Natalini R, Piccoli B, Terracina A (2007) Conservation laws with discontinuous flux. Netw Heterog Media 2:159–179MathSciNetCrossRefMATH
29.
Zurück zum Zitat Gimse T, Risebro NH (1991) Riemann problems with a discontinuous flux function. Third international conference on hyperbolic problems, vols I, II (Uppsala, 1990). Studentlitteratur, Lund, pp 488–502MATH Gimse T, Risebro NH (1991) Riemann problems with a discontinuous flux function. Third international conference on hyperbolic problems, vols I, II (Uppsala, 1990). Studentlitteratur, Lund, pp 488–502MATH
30.
Zurück zum Zitat Gimse T, Risebro NH (1992) Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J Math Anal 23:635–648MathSciNetCrossRefMATH Gimse T, Risebro NH (1992) Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J Math Anal 23:635–648MathSciNetCrossRefMATH
31.
Zurück zum Zitat Karlsen KH, Risebro NH, Towers JD (2003) \(L^1\) stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr K Nor Vidensk Selsk 3:1–49MATH Karlsen KH, Risebro NH, Towers JD (2003) \(L^1\) stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr K Nor Vidensk Selsk 3:1–49MATH
32.
Zurück zum Zitat Karlsen KH, Towers J (2012) Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux. Chin Ann Math 25 Karlsen KH, Towers J (2012) Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux. Chin Ann Math 25
33.
Zurück zum Zitat Karlsen KH, Towers JD (2017) Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition. J Hyperbolic Differ Equ 14:671–701MathSciNetCrossRefMATH Karlsen KH, Towers JD (2017) Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition. J Hyperbolic Differ Equ 14:671–701MathSciNetCrossRefMATH
34.
Zurück zum Zitat Shen W (2019) Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Netw Heterog Media 14:709–732MathSciNetCrossRefMATH Shen W (2019) Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Netw Heterog Media 14:709–732MathSciNetCrossRefMATH
35.
Zurück zum Zitat Chiarello FA, Coclite GM (2023) Non-local scalar conservation laws with discontinuous flux. Netw Heterog Media 18(1):380–398MathSciNetCrossRef Chiarello FA, Coclite GM (2023) Non-local scalar conservation laws with discontinuous flux. Netw Heterog Media 18(1):380–398MathSciNetCrossRef
36.
Zurück zum Zitat Friedrich J, Kolb O, Göttlich S (2018) A Godunov type scheme for a class of LWR traffic flow models with nonlocal flux. Netw Heterog Media 13:531–547MathSciNetCrossRefMATH Friedrich J, Kolb O, Göttlich S (2018) A Godunov type scheme for a class of LWR traffic flow models with nonlocal flux. Netw Heterog Media 13:531–547MathSciNetCrossRefMATH
Metadaten
Titel
Existence of entropy weak solutions for 1D non-local traffic models with space-discontinuous flux
verfasst von
F. A. Chiarello
H. D. Contreras
L. M. Villada
Publikationsdatum
01.08.2023
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2023
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-023-10284-5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.