Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

29.06.2022

Expanded and Filtered Features Based ELM Model for Thyroid Disease Classification

verfasst von: Kapil Juneja

Erschienen in: Wireless Personal Communications

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Thyroid disorder affects the regulation of various metabolic processes throughout the human body. Structural and functional disorders can affect the body and the brain. The computer-aided diagnosis system can identify the kind of thyroid disease. One such machine learning framework is presented in this paper to recognize disease existence and type. This paper presents a fuzzy adaptive feature filtration and expansion-based model to generate the most relevant and contributing features. This two-level filtration model is processed in a controlled fuzzy-based multi-measure evaluation. At the first level, the composite-fuzzy measures are combined with expert’s recommendations for identifying the ranked and relevant features. At the second level, the statistical computation-based distance measure is applied for expanding the featureset. The fuzzification is applied to the expanded featureset for transiting the continuous values to fuzzy-values. At this level, the fuzzy-based composite-measure is applied for selecting the most contributing and relevant features over the expanded dataset. This processing featureset is processed by the Extreme Learning Machine (ELM) classifier to predict the disease existence and class. Five experiments are conducted on two datasets for validating the performance and reliability of the proposed framework. The comparative analysis is conducted against the Naive Bayes, Decision Tree, Decision Forest, Random Tree, Multilevel Perceptron, and Radial Basis Function (RBF) Networks. The analysis outcome is taken in terms of accuracy, error, and relevancy-based parameters. The proposed framework claims a significant gain in accuracy, relevancy, and reduction in the error rate.
Literatur
1.
Zurück zum Zitat Xu, B., & Ghossein, R. (2017). Evolution of the histologic classification of thyroid neoplasms and its impact on clinical management. European Journal of Surgical Oncology (EJSO), 44, 338–347. CrossRef Xu, B., & Ghossein, R. (2017). Evolution of the histologic classification of thyroid neoplasms and its impact on clinical management. European Journal of Surgical Oncology (EJSO), 44, 338–347. CrossRef
2.
Zurück zum Zitat Pan, Q., Zhang, Y., Zuo, M., Xiang, L., & Chen, D. (2016). Improved ensemble classification method of thyroid disease based on random forest. In 2016 8th international conference on information technology in medicine and education (ITME) (pp. 567–571). IEEE. Pan, Q., Zhang, Y., Zuo, M., Xiang, L., & Chen, D. (2016). Improved ensemble classification method of thyroid disease based on random forest. In 2016 8th international conference on information technology in medicine and education (ITME) (pp. 567–571). IEEE.
3.
Zurück zum Zitat Maysanjaya, I. M. D., Nugroho, H. A., & Setiawan, N. A. (2015). A comparison of classification methods on diagnosis of thyroid diseases. In International seminar on intelligent technology and its applications (ISITIA), Surabaya (pp. 89–92). Maysanjaya, I. M. D., Nugroho, H. A., & Setiawan, N. A. (2015). A comparison of classification methods on diagnosis of thyroid diseases. In International seminar on intelligent technology and its applications (ISITIA), Surabaya (pp. 89–92).
4.
Zurück zum Zitat Chang, C. Y., Tsai, M. F., & Chen, S. J. (2008). Classification of the thyroid nodules using support vector machines. In IEEE international joint conference on neural networks (IEEE world congress on computational intelligence), Hong Kong (pp. 3093–3098). Chang, C. Y., Tsai, M. F., & Chen, S. J. (2008). Classification of the thyroid nodules using support vector machines. In IEEE international joint conference on neural networks (IEEE world congress on computational intelligence), Hong Kong (pp. 3093–3098).
5.
Zurück zum Zitat Qureshi, M. A., & Eksioglu, K. (2017). Expert advice ensemble for thyroid disease diagnosis. In 25th signal processing and communications applications conference (SIU), Antalya (pp. 1–4). Qureshi, M. A., & Eksioglu, K. (2017). Expert advice ensemble for thyroid disease diagnosis. In 25th signal processing and communications applications conference (SIU), Antalya (pp. 1–4).
6.
Zurück zum Zitat Duggal, P., & Shukla, S. (2020). Prediction of thyroid disorders using advanced machine learning techniques. In 10th international conference on cloud computing; data science and engineering (pp. 670–675). Duggal, P., & Shukla, S. (2020). Prediction of thyroid disorders using advanced machine learning techniques. In 10th international conference on cloud computing; data science and engineering (pp. 670–675).
7.
Zurück zum Zitat Razia, S., & Narasingarao, M. R. (2017). A neuro computing framework for thyroid disease diagnosis using machine learning techniques. Journal of Theoretical and Applied Information Technology, 95(9), 1996–2005. Razia, S., & Narasingarao, M. R. (2017). A neuro computing framework for thyroid disease diagnosis using machine learning techniques. Journal of Theoretical and Applied Information Technology, 95(9), 1996–2005.
8.
Zurück zum Zitat Razia, S., & Narasinga Rao, M. R. (2016). Machine learning techniques for thyroid disease diagnosis—A review. Indian Journal of Science and Technology, 9(28), 1–9. CrossRef Razia, S., & Narasinga Rao, M. R. (2016). Machine learning techniques for thyroid disease diagnosis—A review. Indian Journal of Science and Technology, 9(28), 1–9. CrossRef
9.
Zurück zum Zitat Razia, S., Narasingarao, M. R., & Bojja, P. (2017). Development and analysis of support vector machine techniques for early prediction of breast cancer and thyroid. Journal of Advanced Research in Dynamical and Control Systems, 9(6), 869–878. Razia, S., Narasingarao, M. R., & Bojja, P. (2017). Development and analysis of support vector machine techniques for early prediction of breast cancer and thyroid. Journal of Advanced Research in Dynamical and Control Systems, 9(6), 869–878.
10.
Zurück zum Zitat IoniŃă, I., & Ionita, L. (2016). Prediction of thyroid disease using data mining techniques. Broad Research in Artificial Intelligence and Neuroscience, 7(3), 115–124. IoniŃă, I., & Ionita, L. (2016). Prediction of thyroid disease using data mining techniques. Broad Research in Artificial Intelligence and Neuroscience, 7(3), 115–124.
11.
Zurück zum Zitat Chandel, K., Kunwar, V., Sabitha, S., Choudhury, T., & Mukherjee, S. (2017). A comparative study on thyroid disease detection using K-nearest neighbor and Naive Bayes classification techniques. CSI Transactions on ICT (pp. 1–7). Chandel, K., Kunwar, V., Sabitha, S., Choudhury, T., & Mukherjee, S. (2017). A comparative study on thyroid disease detection using K-nearest neighbor and Naive Bayes classification techniques. CSI Transactions on ICT (pp. 1–7).
12.
Zurück zum Zitat Razia, S., Narasingarao, M. R., & Sridhar, G. R. (2015). A decision support system for prediction of thyroid disease—A comparison of multilayer perceptron neural network and radial basis function neural network. Journal of Theoretical and Applied Information Technology, 80(3), 544–551. Razia, S., Narasingarao, M. R., & Sridhar, G. R. (2015). A decision support system for prediction of thyroid disease—A comparison of multilayer perceptron neural network and radial basis function neural network. Journal of Theoretical and Applied Information Technology, 80(3), 544–551.
13.
Zurück zum Zitat Sidiq, U., & Aaqib, S. M. (2019). An empirical model for thyroid disease diagnosis using data mining techniques. In International conference on sustainable communication networks and application (pp. 589–597). Sidiq, U., & Aaqib, S. M. (2019). An empirical model for thyroid disease diagnosis using data mining techniques. In International conference on sustainable communication networks and application (pp. 589–597).
14.
Zurück zum Zitat Raisinghani, S., Shamdasani, R., Motwani, M., Bahreja, A., & Raghavan Nair Lalitha, P. (2019). Thyroid prediction using machine learning techniques. In International conference on advances in computing and data sciences (pp. 140–150). Raisinghani, S., Shamdasani, R., Motwani, M., Bahreja, A., & Raghavan Nair Lalitha, P. (2019). Thyroid prediction using machine learning techniques. In International conference on advances in computing and data sciences (pp. 140–150).
15.
Zurück zum Zitat Begum, A., & Parkavi, A. (2019). Prediction of thyroid disease using data mining techniques. In 5th international conference on advanced computing & communication systems (pp. 342–345). Begum, A., & Parkavi, A. (2019). Prediction of thyroid disease using data mining techniques. In 5th international conference on advanced computing & communication systems (pp. 342–345).
16.
Zurück zum Zitat Hemalatha, D., & Poorani, S. (2020). Supervised machine learning models for classification of thyroid data. International Journal of Scientific and Technology Research, 9(2), 1683–1685. Hemalatha, D., & Poorani, S. (2020). Supervised machine learning models for classification of thyroid data. International Journal of Scientific and Technology Research, 9(2), 1683–1685.
17.
Zurück zum Zitat Iqbal, Y., & Mittal, S. (2020). Thyroid disease prediction using hybrid machine learning techniques: an effective framework. International Journal of Scientific and Technology Research, 9(2), 2868–2874. Iqbal, Y., & Mittal, S. (2020). Thyroid disease prediction using hybrid machine learning techniques: an effective framework. International Journal of Scientific and Technology Research, 9(2), 2868–2874.
18.
Zurück zum Zitat Shroff, S., Pise, S., Chalekar, P., & Panicker, S. S. (2015). Thyroid disease diagnosis: A survey. In IEEE 9th international conference on intelligent systems and control (ISCO) (pp. 1–6). Shroff, S., Pise, S., Chalekar, P., & Panicker, S. S. (2015). Thyroid disease diagnosis: A survey. In IEEE 9th international conference on intelligent systems and control (ISCO) (pp. 1–6).
19.
Zurück zum Zitat Li, Z., Qin, J., Zhang, X., & Wan, Y. (2019). A hybrid intelligent framework for thyroid diagnosis. In International conference on cyberspace data and intelligence (pp. 441–451). Li, Z., Qin, J., Zhang, X., & Wan, Y. (2019). A hybrid intelligent framework for thyroid diagnosis. In International conference on cyberspace data and intelligence (pp. 441–451).
20.
Zurück zum Zitat Selwal, A., & Raoof, I. (2019). A multi-layer perceptron based improved thyroid disease prediction system. Indonesian Journal of Electrical Engineering and Computer Science, 17(1), 524–533. CrossRef Selwal, A., & Raoof, I. (2019). A multi-layer perceptron based improved thyroid disease prediction system. Indonesian Journal of Electrical Engineering and Computer Science, 17(1), 524–533. CrossRef
21.
Zurück zum Zitat Dhyan Chandra Yadav and Saurabh Pal. (2019). Decision tree ensemble techniques to predict thyroid disease. International Journal of Recent Technology and Engineering (IJRTE), 8(3), 8242–8246. CrossRef Dhyan Chandra Yadav and Saurabh Pal. (2019). Decision tree ensemble techniques to predict thyroid disease. International Journal of Recent Technology and Engineering (IJRTE), 8(3), 8242–8246. CrossRef
22.
Zurück zum Zitat Dharamkar, B., Saurabh, P., Prasad, R., & Mewada, P. (2020). An ensemble approach for classification of thyroid using machine learning. In Progress in computing; analytics and networking (pp. 13–22). Dharamkar, B., Saurabh, P., Prasad, R., & Mewada, P. (2020). An ensemble approach for classification of thyroid using machine learning. In Progress in computing; analytics and networking (pp. 13–22).
23.
Zurück zum Zitat Dash, S., Das, M. N., & Mishra, B. K. (2016). Implementation of an optimized classification model for prediction of hypothyroid disease risks. In International conference on inventive computation technologies (ICICT) (pp. 1–4). Dash, S., Das, M. N., & Mishra, B. K. (2016). Implementation of an optimized classification model for prediction of hypothyroid disease risks. In International conference on inventive computation technologies (ICICT) (pp. 1–4).
24.
Zurück zum Zitat Biyouki, S. A., Turksen, I. B., & Zarandi, M. H. F. (2015). Fuzzy rule-based expert system for diagnosis of thyroid disease. In IEEE conference on computational intelligence in bioinformatics and computational biology (CIBCB), Niagara Falls (pp. 1–7). Biyouki, S. A., Turksen, I. B., & Zarandi, M. H. F. (2015). Fuzzy rule-based expert system for diagnosis of thyroid disease. In IEEE conference on computational intelligence in bioinformatics and computational biology (CIBCB), Niagara Falls (pp. 1–7).
25.
Zurück zum Zitat Huang, L., Yan, S., Yuan, J., Zuo, Z., Xu, F., Lin, Y., Yang, M. Q., Yang, Z., & Li, G. Z. (2016). Comparing of feature selection and classification methods on report-based subhealth data. In IEEE international conference on bioinformatics and biomedicine (BIBM), Shenzhen (pp. 1356–1358). Huang, L., Yan, S., Yuan, J., Zuo, Z., Xu, F., Lin, Y., Yang, M. Q., Yang, Z., & Li, G. Z. (2016). Comparing of feature selection and classification methods on report-based subhealth data. In IEEE international conference on bioinformatics and biomedicine (BIBM), Shenzhen (pp. 1356–1358).
26.
Zurück zum Zitat Rodriguez, J. M., Godoy, D., & Zunino, A. (2016). An empirical comparison of feature selection methods in problem transformation multi-label classification. IEEE Latin America Transactions, 14, 3784–3791. CrossRef Rodriguez, J. M., Godoy, D., & Zunino, A. (2016). An empirical comparison of feature selection methods in problem transformation multi-label classification. IEEE Latin America Transactions, 14, 3784–3791. CrossRef
27.
Zurück zum Zitat Padmaja, D. L., & Vishnuvardhan, B. (2016). Comparative study of feature subset selection methods for dimensionality reduction on scientific data. In 6th international advanced computing conference (pp. 31–34). Padmaja, D. L., & Vishnuvardhan, B. (2016). Comparative study of feature subset selection methods for dimensionality reduction on scientific data. In 6th international advanced computing conference (pp. 31–34).
28.
Zurück zum Zitat Prasad, V., Srinivasa Rao, T., & Surendra Prasad Babu, M. (2016). Thyroid disease diagnosis via hybrid architecture composing rough data sets theory and machine learning algorithms. Soft Computing, 20, 1179–1189. CrossRef Prasad, V., Srinivasa Rao, T., & Surendra Prasad Babu, M. (2016). Thyroid disease diagnosis via hybrid architecture composing rough data sets theory and machine learning algorithms. Soft Computing, 20, 1179–1189. CrossRef
29.
Zurück zum Zitat Yeh, W.-C. (2012). Novel swarm optimization for mining classification rules on thyroid gland data. Information Sciences, 197, 65–76. CrossRef Yeh, W.-C. (2012). Novel swarm optimization for mining classification rules on thyroid gland data. Information Sciences, 197, 65–76. CrossRef
30.
Zurück zum Zitat Dogantekin, E., Dogantekin, A., & Avci, D. (2011). An expert system based on generalized discriminant analysis and wavelet support vector machine for diagnosis of thyroid diseases. Expert Systems with Applications, 38(1), 146–150. CrossRef Dogantekin, E., Dogantekin, A., & Avci, D. (2011). An expert system based on generalized discriminant analysis and wavelet support vector machine for diagnosis of thyroid diseases. Expert Systems with Applications, 38(1), 146–150. CrossRef
31.
Zurück zum Zitat Hayashi, Y., Nakano, S., & Fujisawa, S. (2015). Use of the recursive-rule extraction algorithm with continuous attributes to improve diagnostic accuracy in thyroid disease. Informatics in Medicine Unlocked, 1, 1–8. CrossRef Hayashi, Y., Nakano, S., & Fujisawa, S. (2015). Use of the recursive-rule extraction algorithm with continuous attributes to improve diagnostic accuracy in thyroid disease. Informatics in Medicine Unlocked, 1, 1–8. CrossRef
32.
Zurück zum Zitat Temurtas, F. (2009). A comparative study on thyroid disease diagnosis using neural networks. Expert Systems with Applications, 36(1), 944–949. CrossRef Temurtas, F. (2009). A comparative study on thyroid disease diagnosis using neural networks. Expert Systems with Applications, 36(1), 944–949. CrossRef
33.
Zurück zum Zitat Kodaz, H., Ozsen, S., Arslan, A., & Gunes, S. (2009). Medical application of information gain based artificial immune recognition system (AIRS): Diagnosis of thyroid disease. Expert Systems with Applications, 36(2), 3086–3092. CrossRef Kodaz, H., Ozsen, S., Arslan, A., & Gunes, S. (2009). Medical application of information gain based artificial immune recognition system (AIRS): Diagnosis of thyroid disease. Expert Systems with Applications, 36(2), 3086–3092. CrossRef
34.
Zurück zum Zitat Polat, K., Sahan, S., & Gunes, S. (2007). A novel hybrid method based on artificial immune recognition system (AIRS) with fuzzy weighted pre-processing for thyroid disease diagnosis. Expert Systems with Applications, 32(4), 1141–1147. CrossRef Polat, K., Sahan, S., & Gunes, S. (2007). A novel hybrid method based on artificial immune recognition system (AIRS) with fuzzy weighted pre-processing for thyroid disease diagnosis. Expert Systems with Applications, 32(4), 1141–1147. CrossRef
35.
Zurück zum Zitat Chang, W.-W., Yeh, W.-C., & Huang, P.-C. (2010). A hybrid immune-estimation distribution of algorithm for mining thyroid gland data. Expert Systems with Applications, 37(3), 2066–2071. CrossRef Chang, W.-W., Yeh, W.-C., & Huang, P.-C. (2010). A hybrid immune-estimation distribution of algorithm for mining thyroid gland data. Expert Systems with Applications, 37(3), 2066–2071. CrossRef
36.
Zurück zum Zitat Ahmad, W., Ahmad, A., Lu, C., Khoso, B. A., & Huang, L. (2018). A novel hybrid decision support system for thyroid disease forecasting. Soft Computing, 22, 5377–5383. CrossRef Ahmad, W., Ahmad, A., Lu, C., Khoso, B. A., & Huang, L. (2018). A novel hybrid decision support system for thyroid disease forecasting. Soft Computing, 22, 5377–5383. CrossRef
37.
Zurück zum Zitat Pal, R., Anand, T., & Dubey, S. K. (2018). Evaluation and performance analysis of classification techniques for thyroid detection. International Journal Business Information System, 28(2), 163–177. CrossRef Pal, R., Anand, T., & Dubey, S. K. (2018). Evaluation and performance analysis of classification techniques for thyroid detection. International Journal Business Information System, 28(2), 163–177. CrossRef
38.
Zurück zum Zitat Shankar, K., Lakshmanaprabu, S. K., Gupta, D., Maseleno, A., & De Albuquerque, V. H. C. (2020). Optimal feature-based multi-kernel SVM approach for thyroid disease classification. The Journal of Supercomputing, 76, 1128–1143. Shankar, K., Lakshmanaprabu, S. K., Gupta, D., Maseleno, A., & De Albuquerque, V. H. C. (2020). Optimal feature-based multi-kernel SVM approach for thyroid disease classification. The Journal of Supercomputing, 76, 1128–1143.
43.
Zurück zum Zitat Chen, H.-L., Yang, Bo., Wang, G., Liu, J., Chen, Y.-D., & Liu, D.-Y. (2012). A Three-stage expert system based on support vector machines for thyroid disease diagnosis. Journal of Medical Systems, 36, 1953–1963. CrossRef Chen, H.-L., Yang, Bo., Wang, G., Liu, J., Chen, Y.-D., & Liu, D.-Y. (2012). A Three-stage expert system based on support vector machines for thyroid disease diagnosis. Journal of Medical Systems, 36, 1953–1963. CrossRef
44.
Zurück zum Zitat Shankar, K., Lakshmanaprabu, S. K., Gupta, D., Maseleno, A., & de Albuquerque, V. H. (2020). Optimal feature-based multi-kernel SVM approach for thyroid disease classification. The Journal of Supercomputing, 76, 1128–1143. CrossRef Shankar, K., Lakshmanaprabu, S. K., Gupta, D., Maseleno, A., & de Albuquerque, V. H. (2020). Optimal feature-based multi-kernel SVM approach for thyroid disease classification. The Journal of Supercomputing, 76, 1128–1143. CrossRef
45.
Zurück zum Zitat Dharmarajan, K., Balasree, K., Arunachalam, A. S., & Abirmai, K. (2020). Thyroid disease classification using decision tree and SVM. Indian Journal of Public Health Research & Development, 11(3), 229–234. Dharmarajan, K., Balasree, K., Arunachalam, A. S., & Abirmai, K. (2020). Thyroid disease classification using decision tree and SVM. Indian Journal of Public Health Research & Development, 11(3), 229–234.
46.
Zurück zum Zitat Li, L.-N., Ouyang, J.-H., Chen, H.-L., & Liu, D.-Y. (2012). A Computer aided diagnosis system for thyroid disease using extreme learning machine. Journal of Medical Systems, 36, 3327–3337. CrossRef Li, L.-N., Ouyang, J.-H., Chen, H.-L., & Liu, D.-Y. (2012). A Computer aided diagnosis system for thyroid disease using extreme learning machine. Journal of Medical Systems, 36, 3327–3337. CrossRef
47.
Zurück zum Zitat Kaya, Y. (2014). A fast intelligent diagnosis system for thyroid disease based on extreme learning machine. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 15(1), 41–49. Kaya, Y. (2014). A fast intelligent diagnosis system for thyroid disease based on extreme learning machine. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 15(1), 41–49.
Metadaten
Titel
Expanded and Filtered Features Based ELM Model for Thyroid Disease Classification
verfasst von
Kapil Juneja
Publikationsdatum
29.06.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09823-7