Skip to main content

2025 | OriginalPaper | Buchkapitel

Expanding the Scope: Inductive Knowledge Graph Reasoning with Multi-starting Progressive Propagation

verfasst von : Zhoutian Shao, Yuanning Cui, Wei Hu

Erschienen in: The Semantic Web – ISWC 2024

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Knowledge graphs (KGs) are widely acknowledged as incomplete, and new entities are constantly emerging in the real world. Inductive KG reasoning aims to predict missing facts for these new entities. Among existing models, graph neural networks (GNNs) based ones have shown promising performance for this task. However, they are still challenged by inefficient message propagation due to the distance and scalability issues. In this paper, we propose a new inductive KG reasoning model, MStar, by leveraging conditional message passing neural networks (C-MPNNs). Our key insight is to select multiple query-specific starting entities to expand the scope of progressive propagation. To propagate query-related messages to a farther area within limited steps, we subsequently design a highway layer to propagate information toward these selected starting entities. Moreover, we introduce a training strategy called LinkVerify to mitigate the impact of noisy training samples. Experimental results validate that MStar achieves superior performance compared with state-of-the-art models, especially for distant entities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bollacker, K.D., Evans, C., Paritosh, P.K., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proc. of SIGMOD, pp. 1247–1250 (2008) Bollacker, K.D., Evans, C., Paritosh, P.K., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proc. of SIGMOD, pp. 1247–1250 (2008)
2.
Zurück zum Zitat Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proc. of NeurIPS, vol. 26, pp. 2787–2795 (2013) Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proc. of NeurIPS, vol. 26, pp. 2787–2795 (2013)
3.
Zurück zum Zitat Chen, J., He, H., Wu, F., Wang, J.: Topology-aware correlations between relations for inductive link prediction in knowledge graphs. In: Proc. of AAAI, vol. 35, pp. 6271–6278 (2021) Chen, J., He, H., Wu, F., Wang, J.: Topology-aware correlations between relations for inductive link prediction in knowledge graphs. In: Proc. of AAAI, vol. 35, pp. 6271–6278 (2021)
4.
Zurück zum Zitat Chen, X., Jia, S., Xiang, Y.: A review: Knowledge reasoning over knowledge graph. Expert Syst. Appl. 141, 112948 (2020)CrossRef Chen, X., Jia, S., Xiang, Y.: A review: Knowledge reasoning over knowledge graph. Expert Syst. Appl. 141, 112948 (2020)CrossRef
5.
Zurück zum Zitat Chen, Z., Wang, X., Wang, C., Li, Z.: PosKHG: a position-aware knowledge hypergraph model for link prediction. Data Sci. Eng. 8, 135–145 (2023)CrossRef Chen, Z., Wang, X., Wang, C., Li, Z.: PosKHG: a position-aware knowledge hypergraph model for link prediction. Data Sci. Eng. 8, 135–145 (2023)CrossRef
6.
Zurück zum Zitat Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proc. of AAAI. vol. 32, pp. 1811–1818 (2018) Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proc. of AAAI. vol. 32, pp. 1811–1818 (2018)
7.
Zurück zum Zitat Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proc. of ICML, vol. 70, pp. 1263–1272 (2017) Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proc. of ICML, vol. 70, pp. 1263–1272 (2017)
8.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc. of CVPR, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc. of CVPR, pp. 770–778 (2016)
9.
Zurück zum Zitat Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proc. of CVPR, pp. 2261–2269 (2017) Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proc. of CVPR, pp. 2261–2269 (2017)
10.
Zurück zum Zitat Huang, X., Romero, M., Ceylan, İ.İ., Barceló, P.: A theory of link prediction via relational Weisfeiler-Leman on knowledge graphs. In: Proc. of NeurIPS, vol. 36, pp. 19714–19748 (2023) Huang, X., Romero, M., Ceylan, İ.İ., Barceló, P.: A theory of link prediction via relational Weisfeiler-Leman on knowledge graphs. In: Proc. of NeurIPS, vol. 36, pp. 19714–19748 (2023)
11.
Zurück zum Zitat Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Trans. Neural Networks Learn. Syst. 33, 494–514 (2022)MathSciNetCrossRef Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Trans. Neural Networks Learn. Syst. 33, 494–514 (2022)MathSciNetCrossRef
12.
Zurück zum Zitat Jia, T., Yang, Y., Lu, X., Zhu, Q., Yang, K., Zhou, X.: Link prediction based on tensor decomposition for the knowledge graph of COVID-19 antiviral drug. Data Intell. 4, 134–148 (2022)CrossRef Jia, T., Yang, Y., Lu, X., Zhu, Q., Yang, K., Zhou, X.: Link prediction based on tensor decomposition for the knowledge graph of COVID-19 antiviral drug. Data Intell. 4, 134–148 (2022)CrossRef
13.
Zurück zum Zitat Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proc. of ICLR, pp. 1–13 (2015) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proc. of ICLR, pp. 1–13 (2015)
14.
Zurück zum Zitat Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge base completion. In: Proc. of ICML, vol. 80, pp. 2869–2878 (2018) Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge base completion. In: Proc. of ICML, vol. 80, pp. 2869–2878 (2018)
15.
Zurück zum Zitat Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web 6, 167–195 (2015)CrossRef Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web 6, 167–195 (2015)CrossRef
16.
Zurück zum Zitat Lin, Q., et al.: Incorporating context graph with logical reasoning for inductive relation prediction. In: Proc. of SIGIR, pp. 893–903 (2022) Lin, Q., et al.: Incorporating context graph with logical reasoning for inductive relation prediction. In: Proc. of SIGIR, pp. 893–903 (2022)
17.
Zurück zum Zitat Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proc. of AAAI, vol. 29, pp. 2181–2187 (2015) Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proc. of AAAI, vol. 29, pp. 2181–2187 (2015)
18.
Zurück zum Zitat Mai, S., Zheng, S., Yang, Y., Hu, H.: Communicative message passing for inductive relation reasoning. In: Proc. of AAAI, vol. 35, pp. 4294–4302 (2021) Mai, S., Zheng, S., Yang, Y., Hu, H.: Communicative message passing for inductive relation reasoning. In: Proc. of AAAI, vol. 35, pp. 4294–4302 (2021)
19.
Zurück zum Zitat Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule learning for knowledge graph completion. In: Proc. of IJCAI, pp. 3137–3143 (2019) Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule learning for knowledge graph completion. In: Proc. of IJCAI, pp. 3137–3143 (2019)
20.
Zurück zum Zitat Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.: Fine-grained evaluation of rule- and embedding-based systems for knowledge graph completion. In: Proc. of ISWC, vol. 11136, pp. 3–20 (2018) Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.: Fine-grained evaluation of rule- and embedding-based systems for knowledge graph completion. In: Proc. of ISWC, vol. 11136, pp. 3–20 (2018)
21.
Zurück zum Zitat Mitchell, T.M., et al.: Never-ending learning. Commun. ACM 61, 103–115 (2018) Mitchell, T.M., et al.: Never-ending learning. Commun. ACM 61, 103–115 (2018)
22.
Zurück zum Zitat Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: Proc. of ICML, pp. 809–816 (2011) Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: Proc. of ICML, pp. 809–816 (2011)
23.
Zurück zum Zitat Pan, Y., Liu, J., Zhang, L., Zhao, T., Lin, Q., Hu, X., Wang, Q.: Inductive relation prediction with logical reasoning using contrastive representations. In: Proc. of EMNLP, pp. 4261–4274 (2022) Pan, Y., Liu, J., Zhang, L., Zhao, T., Lin, Q., Hu, X., Wang, Q.: Inductive relation prediction with logical reasoning using contrastive representations. In: Proc. of EMNLP, pp. 4261–4274 (2022)
24.
Zurück zum Zitat Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Proc. of NeurIPS, vol. 32, pp. 8024–8035 (2019) Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Proc. of NeurIPS, vol. 32, pp. 8024–8035 (2019)
25.
Zurück zum Zitat Qiu, H., Zhang, Y., Li, Y., Yao, Q.: Logical expressiveness of graph neural network for knowledge graph reasoning. In: Proc. of ICLR, pp. 1–21 (2020) Qiu, H., Zhang, Y., Li, Y., Yao, Q.: Logical expressiveness of graph neural network for knowledge graph reasoning. In: Proc. of ICLR, pp. 1–21 (2020)
26.
Zurück zum Zitat Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Discov. Data 15, 14:1–14:49 (2021) Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Discov. Data 15, 14:1–14:49 (2021)
27.
Zurück zum Zitat Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: DRUM: End-to-end differentiable rule mining on knowledge graphs. In: Proc. of NeurIPS, vol. 32, pp. 15321–15331 (2019) Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: DRUM: End-to-end differentiable rule mining on knowledge graphs. In: Proc. of NeurIPS, vol. 32, pp. 15321–15331 (2019)
28.
Zurück zum Zitat Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Proc. of ESWC, vol. 10843, pp. 593–607 (2018) Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Proc. of ESWC, vol. 10843, pp. 593–607 (2018)
29.
Zurück zum Zitat Sun, Z., Deng, Z., Nie, J., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. In: Proc. of ICLR, pp. 1–18 (2019) Sun, Z., Deng, Z., Nie, J., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. In: Proc. of ICLR, pp. 1–18 (2019)
30.
Zurück zum Zitat Sun, Z., Vashishth, S., Sanyal, S., Talukdar, P.P., Yang, Y.: A re-evaluation of knowledge graph completion methods. In: Proc. of ACL, pp. 5516–5522 (2020) Sun, Z., Vashishth, S., Sanyal, S., Talukdar, P.P., Yang, Y.: A re-evaluation of knowledge graph completion methods. In: Proc. of ACL, pp. 5516–5522 (2020)
31.
Zurück zum Zitat Szegedy, C., et al.: Going deeper with convolutions. In: Proc. of CVPR, pp. 1–9 (2015) Szegedy, C., et al.: Going deeper with convolutions. In: Proc. of CVPR, pp. 1–9 (2015)
32.
Zurück zum Zitat Teru, K.K., Denis, E.G., Hamilton, W.L.: Inductive relation prediction by subgraph reasoning. In: Proc. of ICML, vol. 119, pp. 9448–9457 (2020) Teru, K.K., Denis, E.G., Hamilton, W.L.: Inductive relation prediction by subgraph reasoning. In: Proc. of ICML, vol. 119, pp. 9448–9457 (2020)
33.
Zurück zum Zitat Tian, L., Zhou, X., Wu, Y.P., Zhou, W.T., Zhang, J.H., Zhang, T.S.: Knowledge graph and knowledge reasoning: a systematic review. J. Electron. Sci. Technol. 20, 100159 (2022)CrossRef Tian, L., Zhou, X., Wu, Y.P., Zhou, W.T., Zhang, J.H., Zhang, T.S.: Knowledge graph and knowledge reasoning: a systematic review. J. Electron. Sci. Technol. 20, 100159 (2022)CrossRef
34.
Zurück zum Zitat Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Representing text for joint embedding of text and knowledge bases. In: Proc. of EMNLP, pp. 1499–1509 (2015) Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Representing text for joint embedding of text and knowledge bases. In: Proc. of EMNLP, pp. 1499–1509 (2015)
35.
Zurück zum Zitat Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proc. of ICML, vol. 48, pp. 2071–2080 (2016) Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proc. of ICML, vol. 48, pp. 2071–2080 (2016)
36.
Zurück zum Zitat Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-relational graph convolutional networks. In: Proc. of ICLR, pp. 1–16 (2020) Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-relational graph convolutional networks. In: Proc. of ICLR, pp. 1–16 (2020)
37.
Zurück zum Zitat Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proc. of ICLR, pp. 1–12 (2018) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proc. of ICLR, pp. 1–12 (2018)
38.
Zurück zum Zitat Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29, 2724–2743 (2017)CrossRef Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29, 2724–2743 (2017)CrossRef
39.
Zurück zum Zitat Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proc. of AAAI, vol. 28, pp. 1112–1119 (2014) Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proc. of AAAI, vol. 28, pp. 1112–1119 (2014)
40.
Zurück zum Zitat Wu, F., Jing, X., Wei, P., Lan, C., Ji, Y., Jiang, G., Huang, Q.: Semi-supervised multi-view graph convolutional networks with application to webpage classification. Inf. Sci. 591, 142–154 (2022)CrossRef Wu, F., Jing, X., Wei, P., Lan, C., Ji, Y., Jiang, G., Huang, Q.: Semi-supervised multi-view graph convolutional networks with application to webpage classification. Inf. Sci. 591, 142–154 (2022)CrossRef
41.
Zurück zum Zitat Wu, S., Wan, H., Chen, W., Wu, Y., Shen, J., Lin, Y.: Towards enhancing relational rules for knowledge graph link prediction. In: Proc. of EMNLP Findings, pp. 10082–10097 (2023) Wu, S., Wan, H., Chen, W., Wu, Y., Shen, J., Lin, Y.: Towards enhancing relational rules for knowledge graph link prediction. In: Proc. of EMNLP Findings, pp. 10082–10097 (2023)
42.
Zurück zum Zitat Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge graph reasoning. In: Proc. of EMNLP, pp. 564–573 (2017) Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge graph reasoning. In: Proc. of EMNLP, pp. 564–573 (2017)
43.
Zurück zum Zitat Xu, X., Zhang, P., He, Y., Chao, C., Yan, C.: Subgraph neighboring relations infomax for inductive link prediction on knowledge graphs. In: Proc. of IJCAI, pp. 2341–2347 (2022) Xu, X., Zhang, P., He, Y., Chao, C., Yan, C.: Subgraph neighboring relations infomax for inductive link prediction on knowledge graphs. In: Proc. of IJCAI, pp. 2341–2347 (2022)
44.
Zurück zum Zitat Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proc. of ICLR, pp. 1–12 (2015) Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proc. of ICLR, pp. 1–12 (2015)
45.
Zurück zum Zitat Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: Proc. of NeurIPS, vol. 30, pp. 2319–2328 (2017) Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: Proc. of NeurIPS, vol. 30, pp. 2319–2328 (2017)
46.
Zurück zum Zitat Zhang, W., Yao, Z., Chen, M., Huang, Z., Chen, H.: NeuralKG-ind: a Python library for inductive knowledge graph representation learning. In: Proc. of SIGIR, pp. 3140–3144 (2023) Zhang, W., Yao, Z., Chen, M., Huang, Z., Chen, H.: NeuralKG-ind: a Python library for inductive knowledge graph representation learning. In: Proc. of SIGIR, pp. 3140–3144 (2023)
47.
Zurück zum Zitat Zhang, Y., Yao, Q.: Knowledge graph reasoning with relational digraph. In: Proc. of WWW, pp. 912–924 (2022) Zhang, Y., Yao, Q.: Knowledge graph reasoning with relational digraph. In: Proc. of WWW, pp. 912–924 (2022)
48.
Zurück zum Zitat Zhang, Y., Zhou, Z., Yao, Q., Chu, X., Han, B.: AdaProp: learning adaptive propagation for graph neural network based knowledge graph reasoning. In: Proc. of KDD, pp. 3446–3457 (2023) Zhang, Y., Zhou, Z., Yao, Q., Chu, X., Han, B.: AdaProp: learning adaptive propagation for graph neural network based knowledge graph reasoning. In: Proc. of KDD, pp. 3446–3457 (2023)
49.
Zurück zum Zitat Zhu, Z., et al.: A*Net: a scalable path-based reasoning approach for knowledge graphs. In: Proc. of NeurIPS, vol. 36, pp. 59323–59336 (2023) Zhu, Z., et al.: A*Net: a scalable path-based reasoning approach for knowledge graphs. In: Proc. of NeurIPS, vol. 36, pp. 59323–59336 (2023)
50.
Zurück zum Zitat Zhu, Z., Zhang, Z., Xhonneux, L.A.C., Tang, J.: Neural Bellman-Ford networks: a general graph neural network framework for link prediction. In: Proc. of NeurIPS, vol. 34, pp. 29476–29490 (2021) Zhu, Z., Zhang, Z., Xhonneux, L.A.C., Tang, J.: Neural Bellman-Ford networks: a general graph neural network framework for link prediction. In: Proc. of NeurIPS, vol. 34, pp. 29476–29490 (2021)
Metadaten
Titel
Expanding the Scope: Inductive Knowledge Graph Reasoning with Multi-starting Progressive Propagation
verfasst von
Zhoutian Shao
Yuanning Cui
Wei Hu
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-77850-6_3