Skip to main content

2020 | OriginalPaper | Buchkapitel

Expected vs. Unexpected: Selecting Right Measures of Interestingness

verfasst von : Rahul Sharma, Minakshi Kaushik, Sijo Arakkal Peious, Sadok Ben Yahia, Dirk Draheim

Erschienen in: Big Data Analytics and Knowledge Discovery

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Measuring interestingness in between data items is one of the key steps in association rule mining. To assess interestingness, after the introduction of the classical measures (support, confidence and lift), over 40 different measures have been published in the literature. Out of the large variety of proposed measures, it is very difficult to select the appropriate measures in a concrete decision support scenario. In this paper, based on the diversity of measures proposed to date, we conduct a preliminary study to identify the most typical and useful roles of the measures of interestingness. The research on selecting useful measures of interestingness according to their roles will not only help to decide on optimal measures of interestingness, but can also be a key factor in proposing new measures of interestingness in association rule mining.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of VLDB’1994 - the 20th International Conference on Very Large Data Bases, p. 487–499. Morgan Kaufmann (1994) Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of VLDB’1994 - the 20th International Conference on Very Large Data Bases, p. 487–499. Morgan Kaufmann (1994)
3.
Zurück zum Zitat Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley, 3rd edn (1994) Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley, 3rd edn (1994)
5.
Zurück zum Zitat Bay, S.D., Pazzani, M.J.: Detecting change in categorical data: mining contrast sets. In: Proceedings of KDD 1999 - the 5th ACM International Conference on Knowledge Discovery and Data Mining, pp. 302–306. ACM (1999) Bay, S.D., Pazzani, M.J.: Detecting change in categorical data: mining contrast sets. In: Proceedings of KDD 1999 - the 5th ACM International Conference on Knowledge Discovery and Data Mining, pp. 302–306. ACM (1999)
6.
Zurück zum Zitat Chan, R., Yang, Q., Shen, Y.D.: Mining high utility itemsets. In: Proceedings of ICDM’2003-the 3rd IEEE International Conference on Data Mining, pp. 19–26. IEEE, USA (2003) Chan, R., Yang, Q., Shen, Y.D.: Mining high utility itemsets. In: Proceedings of ICDM’2003-the 3rd IEEE International Conference on Data Mining, pp. 19–26. IEEE, USA (2003)
9.
Zurück zum Zitat Hilderman, R.J., Hamilton, H.J.: Knowledge Discovery and Measures of Interest. Kluwer (2001) Hilderman, R.J., Hamilton, H.J.: Knowledge Discovery and Measures of Interest. Kluwer (2001)
11.
Zurück zum Zitat Lenca, P., Meyer, P., Vaillant, B., Lallich, S.: A multicriteria decision aid for interestingness measure selection. Technical report LUSSI-TR-2004-01-EN, École Nationale Supérieure des Télécommunications de Bretagne (2004) Lenca, P., Meyer, P., Vaillant, B., Lallich, S.: A multicriteria decision aid for interestingness measure selection. Technical report LUSSI-TR-2004-01-EN, École Nationale Supérieure des Télécommunications de Bretagne (2004)
12.
Zurück zum Zitat Ling, C.X., Chen, T., Yang, Q., Cheng, J.: Mining optimal actions for profitable CRM. In: Proceedings of ICDM’2002 - the 2nd IEEE International Conference on Data Mining, pp. 767–770. IEEE (2002) Ling, C.X., Chen, T., Yang, Q., Cheng, J.: Mining optimal actions for profitable CRM. In: Proceedings of ICDM’2002 - the 2nd IEEE International Conference on Data Mining, pp. 767–770. IEEE (2002)
13.
Zurück zum Zitat Liu, B., Hsu, W., Chen, S.: Using general impressions to analyze discovered classification rules. In: Proceedings of KDD 1997 - The 3rd International Conference on Knowledge Discovery and Data Mining, pp. 31–36. AAAI (1997) Liu, B., Hsu, W., Chen, S.: Using general impressions to analyze discovered classification rules. In: Proceedings of KDD 1997 - The 3rd International Conference on Knowledge Discovery and Data Mining, pp. 31–36. AAAI (1997)
15.
Zurück zum Zitat Lu, S., Hu, H., Li, F.: Mining weighted association rules. Intell. Data Anal. 5(3), 211–225 (2001)CrossRef Lu, S., Hu, H., Li, F.: Mining weighted association rules. Intell. Data Anal. 5(3), 211–225 (2001)CrossRef
16.
Zurück zum Zitat Ohsaki, M., Kitaguchi, S., Okamoto, K., Yokoi, H., Yamaguchi, T.: Evaluation of rule interestingness measures with a clinical dataset on hepatitis. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 362–373. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30116-5_34CrossRef Ohsaki, M., Kitaguchi, S., Okamoto, K., Yokoi, H., Yamaguchi, T.: Evaluation of rule interestingness measures with a clinical dataset on hepatitis. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 362–373. Springer, Heidelberg (2004). https://​doi.​org/​10.​1007/​978-3-540-30116-5_​34CrossRef
17.
Zurück zum Zitat Padmanabhan, B., Tuzhilin, A.: A belief-driven method for discovering unexpected patterns. In: Proceedings of KDD 1998 - The 4th International Conference on Knowledge Discovery and Data Mining, pp. 94–100. AAAI (1998) Padmanabhan, B., Tuzhilin, A.: A belief-driven method for discovering unexpected patterns. In: Proceedings of KDD 1998 - The 4th International Conference on Knowledge Discovery and Data Mining, pp. 94–100. AAAI (1998)
19.
Zurück zum Zitat Padmanabhan, B., Tuzhilin, A.: Small is beautiful: discovering the minimal set of unexpected patterns. In: Proceedings of KDD’2000 - The 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 54–63. AAAI (2000). http://doi.acm.org/10.1145/347090.347103 Padmanabhan, B., Tuzhilin, A.: Small is beautiful: discovering the minimal set of unexpected patterns. In: Proceedings of KDD’2000 - The 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 54–63. AAAI (2000). http://​doi.​acm.​org/​10.​1145/​347090.​347103
20.
Zurück zum Zitat Piatetsky-Shapiro, G.: Discovery, analysis, and presentation of strong rules. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 229–248. AAAI/MIT Press (1991) Piatetsky-Shapiro, G.: Discovery, analysis, and presentation of strong rules. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 229–248. AAAI/MIT Press (1991)
21.
Zurück zum Zitat Sahar, S.: Interestingness via what is not interesting. In: Proceedings of ACM SIGKDD’1999–The 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 332–336 (1999) Sahar, S.: Interestingness via what is not interesting. In: Proceedings of ACM SIGKDD’1999–The 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 332–336 (1999)
22.
Zurück zum Zitat Shen, Y.D., Zhang, Z., Yang, Q.: Objective-oriented utility-based association mining. In: Proceedings of ICDM’2002–The 2nd IEEE International Conference on Data Mining, pp. 426–433. IEEE Computer Society (2002) Shen, Y.D., Zhang, Z., Yang, Q.: Objective-oriented utility-based association mining. In: Proceedings of ICDM’2002–The 2nd IEEE International Conference on Data Mining, pp. 426–433. IEEE Computer Society (2002)
24.
Zurück zum Zitat Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: Proceedings of ACM SIGKDD’ 2002–The 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 2, pp. 32–41 (2002). https://doi.org/10.1145/775052.775053 Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: Proceedings of ACM SIGKDD’ 2002–The 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 2, pp. 32–41 (2002). https://​doi.​org/​10.​1145/​775052.​775053
27.
Zurück zum Zitat Webb, G.I., Brain, D.: Generality is predictive of prediction accuracy. In: Proceedings of PKAW’2002- Pacific Rim Knowledge Acquisition Workshop, pp. 117–130 (2002) Webb, G.I., Brain, D.: Generality is predictive of prediction accuracy. In: Proceedings of PKAW’2002- Pacific Rim Knowledge Acquisition Workshop, pp. 117–130 (2002)
28.
Zurück zum Zitat Zhong, N., Yao, Y.Y., Ohishima, M.: Peculiarity oriented multidatabase mining. IEEE Trans. Knowl. Data Eng. 15(4), 952–960 (2003)CrossRef Zhong, N., Yao, Y.Y., Ohishima, M.: Peculiarity oriented multidatabase mining. IEEE Trans. Knowl. Data Eng. 15(4), 952–960 (2003)CrossRef
Metadaten
Titel
Expected vs. Unexpected: Selecting Right Measures of Interestingness
verfasst von
Rahul Sharma
Minakshi Kaushik
Sijo Arakkal Peious
Sadok Ben Yahia
Dirk Draheim
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-59065-9_4