Skip to main content
Erschienen in: The Journal of Supercomputing 8/2019

19.01.2018

Experiences with implementing parallel discrete-event simulation on GPU

verfasst von: Janche Sang, Che-Rung Lee, Vernon Rego, Chung-Ta King

Erschienen in: The Journal of Supercomputing | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern graphics processing units (GPUs) offer much more computational power than recent CPUs by providing a vast number of simple, data-parallel, multithreaded cores. In this study, we focus on the use of a GPU to perform parallel discrete-event simulation. Our approach is to use a modified service time distribution function to allow more independent events to be processed in parallel. The implementation issues and alternative strategies will be discussed in detail. We describe and compare our experience and results in using Thrust and CUB, two open-source parallel algorithms libraries which resemble the C\({++}\) Standard Template Library, to build our tool. The experimental results show that our implementation can be two orders of magnitude faster than the sequential simulation for large-scale simulation models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baezner D, Lomow G, Unger BW (1990) Sim++: the transition to distributed simulation. In: Proceedings of the SCS Multiconference on Distributed Simulatio, pp 211–218 Baezner D, Lomow G, Unger BW (1990) Sim++: the transition to distributed simulation. In: Proceedings of the SCS Multiconference on Distributed Simulatio, pp 211–218
2.
Zurück zum Zitat Chandy KM, Misra J (1979) Distributed simulation: a case study in design and verification of distributed programs. IEEE Trans Softw Eng 5(5):440–452MathSciNetCrossRefMATH Chandy KM, Misra J (1979) Distributed simulation: a case study in design and verification of distributed programs. IEEE Trans Softw Eng 5(5):440–452MathSciNetCrossRefMATH
3.
Zurück zum Zitat Evans JB (1988) Structures of discrete event simulation. Ellis Horwood Limited, Market Cross House Evans JB (1988) Structures of discrete event simulation. Ellis Horwood Limited, Market Cross House
4.
Zurück zum Zitat Fujimoto R (1990) Parallel discrete event simulation. CACM 33(10):30–53CrossRef Fujimoto R (1990) Parallel discrete event simulation. CACM 33(10):30–53CrossRef
5.
Zurück zum Zitat Harris M, Garland M (2011) Optimizing parallel prefix operations for the fermi architecture. In: Chapter 3 of the book “GPU Computing Gems—Jade Edition”. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA Harris M, Garland M (2011) Optimizing parallel prefix operations for the fermi architecture. In: Chapter 3 of the book “GPU Computing Gems—Jade Edition”. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
7.
Zurück zum Zitat Jefferson D (1985) Virtual time. ACM Trans Program Lang Syst 7:404–425CrossRef Jefferson D (1985) Virtual time. ACM Trans Program Lang Syst 7:404–425CrossRef
8.
Zurück zum Zitat Kirk DB, Hwu WMW (2010) Programming massively parallel processors: a hands-on approach, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco Kirk DB, Hwu WMW (2010) Programming massively parallel processors: a hands-on approach, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco
9.
Zurück zum Zitat Lo SH, Lee CR, Chung IH, Chung YC (2013) Optimizing pairwise box intersection checking on GPUs for large-scale simulations. ACM Trans Model Comput Simul 23(3):19:1–19:22MathSciNetCrossRefMATH Lo SH, Lee CR, Chung IH, Chung YC (2013) Optimizing pairwise box intersection checking on GPUs for large-scale simulations. ACM Trans Model Comput Simul 23(3):19:1–19:22MathSciNetCrossRefMATH
11.
Zurück zum Zitat Mascarenhas E, Knop F, Pasquini R, Rego V (1998) Minimum cost adaptive synchronization: experiments with the parasol system. ACM Trans Model Comput Simul 8(4):401–430CrossRefMATH Mascarenhas E, Knop F, Pasquini R, Rego V (1998) Minimum cost adaptive synchronization: experiments with the parasol system. ACM Trans Model Comput Simul 8(4):401–430CrossRefMATH
12.
Zurück zum Zitat Nobile MS, Cazzaniga P, Besozzi D, Mauri G (2014) GPU-accelerated simulations of mass-action kinetics models with cupSODA. J Supercomput 69:17–24CrossRef Nobile MS, Cazzaniga P, Besozzi D, Mauri G (2014) GPU-accelerated simulations of mass-action kinetics models with cupSODA. J Supercomput 69:17–24CrossRef
14.
Zurück zum Zitat NVIDIA (2012) CUDA Programming guide version 4.2 NVIDIA (2012) CUDA Programming guide version 4.2
15.
Zurück zum Zitat Park H, Fishwick PA (2010) A GPU-based application framework supporting fast discrete-event simulation. Simulation 86(10):613–628CrossRef Park H, Fishwick PA (2010) A GPU-based application framework supporting fast discrete-event simulation. Simulation 86(10):613–628CrossRef
16.
Zurück zum Zitat Park H, Fishwick PA (2011) An analysis of queuing network simulation using GPU-based hardware acceleration. ACM Trans Model Comput Simul 21(3):18CrossRef Park H, Fishwick PA (2011) An analysis of queuing network simulation using GPU-based hardware acceleration. ACM Trans Model Comput Simul 21(3):18CrossRef
17.
Zurück zum Zitat Perumalla KS (2006) Discrete-event execution alternatives on general purpose graphical processing units (gpgpus). In: Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation, PADS ’06, Washington, DC, USA, pp 74–81 Perumalla KS (2006) Discrete-event execution alternatives on general purpose graphical processing units (gpgpus). In: Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation, PADS ’06, Washington, DC, USA, pp 74–81
18.
Zurück zum Zitat Rango AD, Macr M, D’Ambrosio D, Spataro W (2015) Accelerating lava flows simulations with gpgpu and opencl. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), pp 581–588 Rango AD, Macr M, D’Ambrosio D, Spataro W (2015) Accelerating lava flows simulations with gpgpu and opencl. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), pp 581–588
19.
Zurück zum Zitat Rego V, Sang J, Yu C (2016) A fast hybrid approach for stream compaction on GPUs. In: Proceedings of the International Workshop on GPU Computing and Applications Rego V, Sang J, Yu C (2016) A fast hybrid approach for stream compaction on GPUs. In: Proceedings of the International Workshop on GPU Computing and Applications
20.
Zurück zum Zitat Rego V, Sunderam VS (1992) Experiments in concurrent stochastic simulation: the eclipse paradigm. J Parallel Distrib Comput 14(1):66–84CrossRef Rego V, Sunderam VS (1992) Experiments in concurrent stochastic simulation: the eclipse paradigm. J Parallel Distrib Comput 14(1):66–84CrossRef
21.
Zurück zum Zitat Sang J, Mascarenhas E, Rego V (1996) Mobile-process based parallel simulation. J Parallel Distrib Comput 33:12–23CrossRef Sang J, Mascarenhas E, Rego V (1996) Mobile-process based parallel simulation. J Parallel Distrib Comput 33:12–23CrossRef
22.
Zurück zum Zitat Schwetman HD (1978) Hybrid simulation models of computer systems. Commun ACM 21:718–723CrossRefMATH Schwetman HD (1978) Hybrid simulation models of computer systems. Commun ACM 21:718–723CrossRefMATH
23.
Zurück zum Zitat Sunderam VS, Rego V (1991) Eclipse: a system for high performance concurrent simulation. Softw Pract Exp 21(11):1189–1219CrossRef Sunderam VS, Rego V (1991) Eclipse: a system for high performance concurrent simulation. Softw Pract Exp 21(11):1189–1219CrossRef
24.
Zurück zum Zitat West J, Mullarney A (1988) ModSim: a language for distributed simulation. In: Proceedings of SCS Multiconference on Distributed Simulation West J, Mullarney A (1988) ModSim: a language for distributed simulation. In: Proceedings of SCS Multiconference on Distributed Simulation
25.
Zurück zum Zitat Woods RL, Lawrence KL (1997) Modeling and simulation of dynamic systems. Prentice-Hall, Upper Saddle River Woods RL, Lawrence KL (1997) Modeling and simulation of dynamic systems. Prentice-Hall, Upper Saddle River
26.
Zurück zum Zitat Wyllie JC (1979) The complexity of parallel computations. Technical report, Ph.D. thesis, Cornell University, Ithaca, NY, USA Wyllie JC (1979) The complexity of parallel computations. Technical report, Ph.D. thesis, Cornell University, Ithaca, NY, USA
27.
Zurück zum Zitat Xu Z, Bagrodia R (2007) GPU-accelerated evaluation platform for high fidelity network modeling. In: PADS, pp 131–140 Xu Z, Bagrodia R (2007) GPU-accelerated evaluation platform for high fidelity network modeling. In: PADS, pp 131–140
Metadaten
Titel
Experiences with implementing parallel discrete-event simulation on GPU
verfasst von
Janche Sang
Che-Rung Lee
Vernon Rego
Chung-Ta King
Publikationsdatum
19.01.2018
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 8/2019
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-018-2254-4

Weitere Artikel der Ausgabe 8/2019

The Journal of Supercomputing 8/2019 Zur Ausgabe