Skip to main content
Erschienen in: Rare Metals 2/2017

07.01.2017

Experiment and numerical simulation of melt convection and oxygen distribution in 400-mm Czochralski silicon crystal growth

verfasst von: Ran Teng, Yang Li, Bin Cui, Qing Chang, Qing-Hua Xiao, Guo-Hu Zhang

Erschienen in: Rare Metals | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Single-crystalline silicon materials with large dimensions have been widely used as assemblies in plasma silicon etching machines. However, information about large-diameter low-cost preparation technology has not been sufficiently reported. In this paper, it was focused on the preparation of 400-mm silicon (100) crystal lightly doped with boron from 28-in. hot zones. Resistivity uniformity and oxygen concentration of the silicon crystal were investigated by direct-current (DC) four-point probes method and Fourier transform infrared spectroscopy (FTIR), respectively. The global heat transfer, melt flow and oxygen distribution were calculated by finite element method (FEM). The results show that 28-in. hot zones can replace conventional 32 in. ones to grow 400-mm-diameter silicon single crystals. The change in crucible diameter can save energy, reduce cost and improve efficiency. The trend of oxygen distribution obtained in calculations is in good agreement with experimental values. The present model can well predict the 400-mm-diameter silicon crystal growth and is essential for the optimization of furnace design and process condition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Yamagishi H, Kuramoto M, Shiraishi Y, Machida N, Takano K, Takase N, Iida T, Matsubara J, Minami H, Imai M, Takada K. Large diameter silicon technology and epitaxy. Microelectron Eng. 1999;45(2–3):101.CrossRef Yamagishi H, Kuramoto M, Shiraishi Y, Machida N, Takano K, Takase N, Iida T, Matsubara J, Minami H, Imai M, Takada K. Large diameter silicon technology and epitaxy. Microelectron Eng. 1999;45(2–3):101.CrossRef
[2]
Zurück zum Zitat Shiraishi Y, Takano K, Matsubara J, Iida T, Takase N, Machida N, Kuramoto M, Yamagishi H. Growth of silicon crystal with a diameter of 400 mm and weight of 400 kg. J Cryst Growth. 2001;229(1):17.CrossRef Shiraishi Y, Takano K, Matsubara J, Iida T, Takase N, Machida N, Kuramoto M, Yamagishi H. Growth of silicon crystal with a diameter of 400 mm and weight of 400 kg. J Cryst Growth. 2001;229(1):17.CrossRef
[3]
Zurück zum Zitat Oishi H, Asakawa K, Matsuzaki J, Ashida A. Development of water soluble coolant for multi wire saw slicing of 400 mm diameter silicon. In: 14th Annual Meeting of the American Society for Precision Engineering. Nice; 1999. 231. Oishi H, Asakawa K, Matsuzaki J, Ashida A. Development of water soluble coolant for multi wire saw slicing of 400 mm diameter silicon. In: 14th Annual Meeting of the American Society for Precision Engineering. Nice; 1999. 231.
[4]
Zurück zum Zitat Takano K, Shiraishi Y, Takase N, Matsubara J, Machida N, Kuramoto M, Yamagishi H. Numerical simulation for silicon crystal growth of up to 400 mm diameter in Czochralski furnaces. Mater Sci Eng B. 2000;73(73):30.CrossRef Takano K, Shiraishi Y, Takase N, Matsubara J, Machida N, Kuramoto M, Yamagishi H. Numerical simulation for silicon crystal growth of up to 400 mm diameter in Czochralski furnaces. Mater Sci Eng B. 2000;73(73):30.CrossRef
[5]
Zurück zum Zitat Takano K, Shiraishi Y, Matsubara J, Iida T, Takase N, Machida N, Kuramoto M, Yamagishi H. Global simulation of the CZ silicon crystal growth up to 400 mm in diameter. J Cryst Growth. 2001;229(1):26.CrossRef Takano K, Shiraishi Y, Matsubara J, Iida T, Takase N, Machida N, Kuramoto M, Yamagishi H. Global simulation of the CZ silicon crystal growth up to 400 mm in diameter. J Cryst Growth. 2001;229(1):26.CrossRef
[6]
Zurück zum Zitat Iida T, Machida N, Takase N, Takano K, Matsubara J, Shiraishi Y, Kuramoto M, Yamagishi H. Development of crystal supporting system for diameter of 400 mm silicon crystal growth. J Cryst Growth. 2001;229(1):31.CrossRef Iida T, Machida N, Takase N, Takano K, Matsubara J, Shiraishi Y, Kuramoto M, Yamagishi H. Development of crystal supporting system for diameter of 400 mm silicon crystal growth. J Cryst Growth. 2001;229(1):31.CrossRef
[7]
Zurück zum Zitat Kalaev VV. Combined effect of DC magnetic fields and free surface stresses on the melt flow and crystallization front formation during 400 mm diameter Si Cz crystal growth. J Cryst Growth. 2007;303(1):203.CrossRef Kalaev VV. Combined effect of DC magnetic fields and free surface stresses on the melt flow and crystallization front formation during 400 mm diameter Si Cz crystal growth. J Cryst Growth. 2007;303(1):203.CrossRef
[8]
Zurück zum Zitat Kinney TA, Brown RA. Application of turbulence modeling to the integrated hydrodynamic thermal-capillary model of Czochralski crystal growth of silicon. J Cryst Growth. 1993;132(3–4):551.CrossRef Kinney TA, Brown RA. Application of turbulence modeling to the integrated hydrodynamic thermal-capillary model of Czochralski crystal growth of silicon. J Cryst Growth. 1993;132(3–4):551.CrossRef
[9]
Zurück zum Zitat Lipchin A, Brown RA. Hybrid finite-volume/finite-element simulation of heat transfer and melt turbulence in Czochralski crystal growth of silicon. J Cryst Growth. 2000;216(1–4):192.CrossRef Lipchin A, Brown RA. Hybrid finite-volume/finite-element simulation of heat transfer and melt turbulence in Czochralski crystal growth of silicon. J Cryst Growth. 2000;216(1–4):192.CrossRef
[10]
Zurück zum Zitat Bornside DE, Kinney TA, Brown RA. Finite element/Newton method for the analysis of Czochralski crystal growth with diffuse-grey radiative heat transfer. Int J Numer Methods Eng. 1990;30(1):133.CrossRef Bornside DE, Kinney TA, Brown RA. Finite element/Newton method for the analysis of Czochralski crystal growth with diffuse-grey radiative heat transfer. Int J Numer Methods Eng. 1990;30(1):133.CrossRef
[11]
Zurück zum Zitat Kopetsch H. A numerical method for the time-dependent Stefan problem in Czochralski crystal growth. J Cryst Growth. 1988;88(1):71.CrossRef Kopetsch H. A numerical method for the time-dependent Stefan problem in Czochralski crystal growth. J Cryst Growth. 1988;88(1):71.CrossRef
[12]
Zurück zum Zitat Kopetsch H. Numerical simulation of the interface inversion in Czochralski growth of oxide crystal. J Cryst Growth. 1990;102(3):505.CrossRef Kopetsch H. Numerical simulation of the interface inversion in Czochralski growth of oxide crystal. J Cryst Growth. 1990;102(3):505.CrossRef
[13]
Zurück zum Zitat Zhang H, Prasad V. A multizone adaptive process model for low and high pressure crystal growth. J Cryst Growth. 1995;155(1–2):47.CrossRef Zhang H, Prasad V. A multizone adaptive process model for low and high pressure crystal growth. J Cryst Growth. 1995;155(1–2):47.CrossRef
[14]
Zurück zum Zitat Muller G, Friedrich J. Challenges in modeling of bulk crystal growth. J Cryst Growth. 2004;266(1–3):1.CrossRef Muller G, Friedrich J. Challenges in modeling of bulk crystal growth. J Cryst Growth. 2004;266(1–3):1.CrossRef
[15]
Zurück zum Zitat Lan CW. Recent process of crystal growth modeling and growth control. Chem Eng Sci. 2004;59(7):1437.CrossRef Lan CW. Recent process of crystal growth modeling and growth control. Chem Eng Sci. 2004;59(7):1437.CrossRef
[16]
Zurück zum Zitat Bogaert NV, Dupret F. Dynamic global simulation of the Czochralski process. J Cryst Growth. 1997;171(1–2):65.CrossRef Bogaert NV, Dupret F. Dynamic global simulation of the Czochralski process. J Cryst Growth. 1997;171(1–2):65.CrossRef
[17]
Zurück zum Zitat Kakimoto K, Yi KW, Eguchi M. Oxygen transfer during single silicon crystal growth in Czochralski system with vertical magnetic fields. J Cryst Growth. 1996;163(3):218.CrossRef Kakimoto K, Yi KW, Eguchi M. Oxygen transfer during single silicon crystal growth in Czochralski system with vertical magnetic fields. J Cryst Growth. 1996;163(3):218.CrossRef
[18]
Zurück zum Zitat Kakimoto K. Springer Handbook of Crystal Growth. Govindhan D, Kullaiah B, Vishwanath P, Michael D, editors. Heidelberg: Springer; 2010. 231. Kakimoto K. Springer Handbook of Crystal Growth. Govindhan D, Kullaiah B, Vishwanath P, Michael D, editors. Heidelberg: Springer; 2010. 231.
[19]
Zurück zum Zitat Liu LJ, Kakimoto K. Effects of crystal rotation rate on the melt-crystal interface of a CZ–Si crystal growth in a transverse magnetic field. J Cryst Growth. 2008;310(2):306.CrossRef Liu LJ, Kakimoto K. Effects of crystal rotation rate on the melt-crystal interface of a CZ–Si crystal growth in a transverse magnetic field. J Cryst Growth. 2008;310(2):306.CrossRef
[20]
Zurück zum Zitat Tu HL, Xiao QH, Gao Y, Zhou QG, Zhang GH, Chang Q. Numerical analysis and simulation of Czochralski growth process for large diameter silicon crystals. Rare Met. 2007;26(6):521.CrossRef Tu HL, Xiao QH, Gao Y, Zhou QG, Zhang GH, Chang Q. Numerical analysis and simulation of Czochralski growth process for large diameter silicon crystals. Rare Met. 2007;26(6):521.CrossRef
[21]
Zurück zum Zitat Tu HL, Zhou QG, Zhang GH, Dai XL, Wu ZQ, Jia TT. Growth technologies for 300 mm arsenic heavily doped silicon crystals. ECS Trans. 2006;2(2):89.CrossRef Tu HL, Zhou QG, Zhang GH, Dai XL, Wu ZQ, Jia TT. Growth technologies for 300 mm arsenic heavily doped silicon crystals. ECS Trans. 2006;2(2):89.CrossRef
[22]
Zurück zum Zitat Teng R, Zhou QG, Dai XL, Wu ZQ, Xiao QH. Optimization of heat shield for single silicon crystal growth by using numerical simulation. Rare Met. 2012;31(5):489.CrossRef Teng R, Zhou QG, Dai XL, Wu ZQ, Xiao QH. Optimization of heat shield for single silicon crystal growth by using numerical simulation. Rare Met. 2012;31(5):489.CrossRef
[23]
Zurück zum Zitat Su WJ, Zuo R, Mazaev K, Kalaev V. Optimization of crystal growth by changes of flow guide, radiation shield and sidewall insulation in CZ Si furnace. J Cryst Growth. 2010;312(4):495.CrossRef Su WJ, Zuo R, Mazaev K, Kalaev V. Optimization of crystal growth by changes of flow guide, radiation shield and sidewall insulation in CZ Si furnace. J Cryst Growth. 2010;312(4):495.CrossRef
[24]
Zurück zum Zitat Su WJ, Zuo R, Lu JG, Di CY, Cheng XN. Numerical and experimental studies on the black periphery wafer in CZ Si growth. J Cryst Growth. 2014;388(15):42.CrossRef Su WJ, Zuo R, Lu JG, Di CY, Cheng XN. Numerical and experimental studies on the black periphery wafer in CZ Si growth. J Cryst Growth. 2014;388(15):42.CrossRef
[25]
Zurück zum Zitat Ren BY, Zhao L, Zhao XL, Wang HX. Effects of argon gas flow rate and guide shell on oxygen concentration in Czochralski silicon growth. Rare Met. 2006;25(1):7.CrossRef Ren BY, Zhao L, Zhao XL, Wang HX. Effects of argon gas flow rate and guide shell on oxygen concentration in Czochralski silicon growth. Rare Met. 2006;25(1):7.CrossRef
[26]
Zurück zum Zitat Cao JW, Gao Y, Chen Y, Zhang GH, Qiu MX. Simulation aided hot zone design for faster growth of CZ silicon monocrystals. Rare Met. 2011;30(2):155.CrossRef Cao JW, Gao Y, Chen Y, Zhang GH, Qiu MX. Simulation aided hot zone design for faster growth of CZ silicon monocrystals. Rare Met. 2011;30(2):155.CrossRef
[27]
Zurück zum Zitat Chen JC, Teng YY, Wun WT, Lu CW, Chen HI, Chen CY, Lan WC. Numerical simulation of oxygen transport during the CZ silicon crystal growth process. J Cryst Growth. 2011;318(1):323. Chen JC, Teng YY, Wun WT, Lu CW, Chen HI, Chen CY, Lan WC. Numerical simulation of oxygen transport during the CZ silicon crystal growth process. J Cryst Growth. 2011;318(1):323.
[28]
Zurück zum Zitat Chen JC, Guo PC, Chang CH, Teng YY, Hsu CH, Wang M, Liu CC. Numerical simulation of oxygen transport during the Czochralski silicon crystal growth with a cusp magnetic field. J Cryst Growth. 2014;24(1):888.CrossRef Chen JC, Guo PC, Chang CH, Teng YY, Hsu CH, Wang M, Liu CC. Numerical simulation of oxygen transport during the Czochralski silicon crystal growth with a cusp magnetic field. J Cryst Growth. 2014;24(1):888.CrossRef
[29]
Zurück zum Zitat Yu HP, Sui YK, Zhang FY, Chang XA. Numerical simulation of distribution of the oxygen concentration in 300 mm CZ Si melt under a cusp magnetic field. J. Semiconductors. 2005;26(3):253. Yu HP, Sui YK, Zhang FY, Chang XA. Numerical simulation of distribution of the oxygen concentration in 300 mm CZ Si melt under a cusp magnetic field. J. Semiconductors. 2005;26(3):253.
[30]
Zurück zum Zitat Muiznieks A, Raming G, Muhlbauer A, Virbulis J, Hanna B, Ammon WV. Stress-induced dislocation generation in large FZ-and-CZ-silicon single crystals-numerical model and qualitative considerations. J Cryst Growth. 2001;230(1–2):305.CrossRef Muiznieks A, Raming G, Muhlbauer A, Virbulis J, Hanna B, Ammon WV. Stress-induced dislocation generation in large FZ-and-CZ-silicon single crystals-numerical model and qualitative considerations. J Cryst Growth. 2001;230(1–2):305.CrossRef
[31]
Zurück zum Zitat Smirnova OV, Durnev NV, Shandrakova KE, Mizitov EL, Soklakov VD. Optimization of furnace design and growth parameters for Si Cz growth, using numerical simulation. J Cryst Growth. 2008;310(7):2185.CrossRef Smirnova OV, Durnev NV, Shandrakova KE, Mizitov EL, Soklakov VD. Optimization of furnace design and growth parameters for Si Cz growth, using numerical simulation. J Cryst Growth. 2008;310(7):2185.CrossRef
[32]
Zurück zum Zitat Omidreza AN, Mohammed MH, Moez J. Effect of crystal and crucible rotations on the interface shape of Czochralski grown silicon single crystals. J Cryst Growth. 2011;318(1):173.CrossRef Omidreza AN, Mohammed MH, Moez J. Effect of crystal and crucible rotations on the interface shape of Czochralski grown silicon single crystals. J Cryst Growth. 2011;318(1):173.CrossRef
Metadaten
Titel
Experiment and numerical simulation of melt convection and oxygen distribution in 400-mm Czochralski silicon crystal growth
verfasst von
Ran Teng
Yang Li
Bin Cui
Qing Chang
Qing-Hua Xiao
Guo-Hu Zhang
Publikationsdatum
07.01.2017
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2017
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-016-0865-6

Weitere Artikel der Ausgabe 2/2017

Rare Metals 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.