Skip to main content
Erschienen in:
Buchtitelbild

2007 | OriginalPaper | Buchkapitel

1. Experiment as a Boundary-Value Problem

verfasst von : Ronald Panton, Saeid Kheirandish, Ph.D, Manfred Wagner, Prof.

Erschienen in: Springer Handbook of Experimental Fluid Mechanics

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A fluid flow experiment is an attempt to isolate a part of the world and measure flow and thermodynamic properties. A fluid is defined as a material that deforms continuously if a shear stress is applied. An internal flow situation has walls bounding the flow, but an inflow and outflow position must be controlled. An external flow problem has a uniform flow far from the body of interest. In both situations the state of flow at the boundary is controlled. In the mathematical representation of the flow, the flow conditions on the boundary are specified. This is the nature of the governing physics. If the boundary conditions depend on time the flow situation in the entire region must be specified at the initial time.
In what follows the major physical laws are outlined. In most cases tensor calculus in symbolic form is employed. Scalars are lightface type, vectors are boldface type, and tensors are boldface capitals. However, in cases where confusion is possible with tensor multiplications, index notation is employed. Scalars are then without an index, vectors have one index and tensors have two or more indices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.1.
Zurück zum Zitat S.I. Green: Fluid Vorticies (Kluwer Academic, Dordrecht 1995) S.I. Green: Fluid Vorticies (Kluwer Academic, Dordrecht 1995)
1.2.
Zurück zum Zitat D.D. Joseph: Fluid Dynamics of Viscoelastic Liquids (Springer, Berlin 1990)MATH D.D. Joseph: Fluid Dynamics of Viscoelastic Liquids (Springer, Berlin 1990)MATH
1.3.
Zurück zum Zitat R.G. Larson: Constitutive Equations for Polymer Melts and Solutions (Butterworths, London 1988) R.G. Larson: Constitutive Equations for Polymer Melts and Solutions (Butterworths, London 1988)
1.4.
Zurück zum Zitat M. Doi, S.F. Edwards: The Theory of Polymer Dynamics (Oxford Univ. Press, Oxford 1986) M. Doi, S.F. Edwards: The Theory of Polymer Dynamics (Oxford Univ. Press, Oxford 1986)
1.5.
Zurück zum Zitat M.H. Wagner: Challenges in Nonlinear Rheology of Linear and Long-Chain Branched Polymer Melts (Proc. XIVth Int. Congr. On Rheology, Korea 2004) M.H. Wagner: Challenges in Nonlinear Rheology of Linear and Long-Chain Branched Polymer Melts (Proc. XIVth Int. Congr. On Rheology, Korea 2004)
1.6.
Zurück zum Zitat T.C.B. McLeish, S.T. Milner: Entangled dynamics and melt flow behavior of branched polymers, Adv. Polym. Sci. 143, 195–256 (1999)CrossRef T.C.B. McLeish, S.T. Milner: Entangled dynamics and melt flow behavior of branched polymers, Adv. Polym. Sci. 143, 195–256 (1999)CrossRef
1.7.
Zurück zum Zitat M.H. Wagner, P. Rubio, H. Bastian: The molecular stress function model for polydisperse and polymer melts with dissipative convective constraint release, J. Rheol. 45, 1387–1412 (2001)CrossRef M.H. Wagner, P. Rubio, H. Bastian: The molecular stress function model for polydisperse and polymer melts with dissipative convective constraint release, J. Rheol. 45, 1387–1412 (2001)CrossRef
1.8.
Zurück zum Zitat H. Bastian: Non-linear viscoelasticity of linear and long-chain-branched polymer melts in shear and extensional flows , Ph. D. Thesis (Universität Stuttgart, Stuttgart 2000), http://elib.uni-stuttgart.de/opus/volltexte/2001/894 H. Bastian: Non-linear viscoelasticity of linear and long-chain-branched polymer melts in shear and extensional flows , Ph. D. Thesis (Universität Stuttgart, Stuttgart 2000), http://​elib.​uni-stuttgart.​de/​opus/​volltexte/​2001/​894
1.9.
Zurück zum Zitat M.H. Wagner, P. Ehrecke: Dynamics of polymer melts in reversing shear flows, J. Non-Newtonian Fluid Mech. 76, 183–197 (1998)CrossRefMATH M.H. Wagner, P. Ehrecke: Dynamics of polymer melts in reversing shear flows, J. Non-Newtonian Fluid Mech. 76, 183–197 (1998)CrossRefMATH
1.10.
Zurück zum Zitat A.S. Lodge: Constitutive equations from molecular theories for polymer solutions, Rheol. Acta. 7, 379–392 (1968)CrossRefMATH A.S. Lodge: Constitutive equations from molecular theories for polymer solutions, Rheol. Acta. 7, 379–392 (1968)CrossRefMATH
1.11.
Zurück zum Zitat E. van Ruymbeke, R. Keunings, V. Stéphenne, A. Hagenaars, C. Bailly: Evaluation of reptation models for predicting the linear viscoelastic properties of linear entangled polymers, Macromolecules 35, 2689–2699 (2002)CrossRef E. van Ruymbeke, R. Keunings, V. Stéphenne, A. Hagenaars, C. Bailly: Evaluation of reptation models for predicting the linear viscoelastic properties of linear entangled polymers, Macromolecules 35, 2689–2699 (2002)CrossRef
1.12.
Zurück zum Zitat A.L. Frischknecht, S.T. Milner, A. Pryke, R.N. Young, R. Hawkins, T.C.B. McLeish: Rheology of three-arm asymmetric star polymer melts, Macromolecules 35, 4801–4820 (2002)CrossRef A.L. Frischknecht, S.T. Milner, A. Pryke, R.N. Young, R. Hawkins, T.C.B. McLeish: Rheology of three-arm asymmetric star polymer melts, Macromolecules 35, 4801–4820 (2002)CrossRef
1.13.
Zurück zum Zitat M.H. Wagner, J. Meissner: Network disentanglement and time-dependent flow behavior of polymer melts, Macromol. Chem. 181, 1533–1550 (1980)CrossRef M.H. Wagner, J. Meissner: Network disentanglement and time-dependent flow behavior of polymer melts, Macromol. Chem. 181, 1533–1550 (1980)CrossRef
1.14.
Zurück zum Zitat C.W. Macosko: Rheology, Principles, Measurements and Applications (VCH, New York 1994) C.W. Macosko: Rheology, Principles, Measurements and Applications (VCH, New York 1994)
1.15.
Zurück zum Zitat H.M. Laun: Description of the non-linear shear behavior of a low density polyethylene melt by means of an experimentally determined strain dependent memory function, Rheol. Acta. 17, 1–15 (1978)CrossRef H.M. Laun: Description of the non-linear shear behavior of a low density polyethylene melt by means of an experimentally determined strain dependent memory function, Rheol. Acta. 17, 1–15 (1978)CrossRef
1.16.
Zurück zum Zitat M.H. Wagner: Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt, Rheol. Acta. 15, 136–142 (1976)CrossRef M.H. Wagner: Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt, Rheol. Acta. 15, 136–142 (1976)CrossRef
1.17.
Zurück zum Zitat M.H. Wagner: Prediction of primary normal stress difference from shear viscosity data using a single integral constitutive equation, Rheol. Acta. 16, 43–50 (1977)CrossRef M.H. Wagner: Prediction of primary normal stress difference from shear viscosity data using a single integral constitutive equation, Rheol. Acta. 16, 43–50 (1977)CrossRef
1.18.
Zurück zum Zitat M.H. Wagner, S.E. Stephenson: The spike strain test for polymeric liquid and its relevance for irreversible destruction of network connectivity by deformation, Rheol. Acta. 18, 463–468 (1979)CrossRef M.H. Wagner, S.E. Stephenson: The spike strain test for polymeric liquid and its relevance for irreversible destruction of network connectivity by deformation, Rheol. Acta. 18, 463–468 (1979)CrossRef
1.19.
Zurück zum Zitat M.H. Wagner, S.E. Stephenson: The irreversibility assumption of network disentanglement in flowing polymer melts and its effects on elastic recoil predictions, J. Rheol. 23, 489–504 (1979)CrossRef M.H. Wagner, S.E. Stephenson: The irreversibility assumption of network disentanglement in flowing polymer melts and its effects on elastic recoil predictions, J. Rheol. 23, 489–504 (1979)CrossRef
1.20.
Zurück zum Zitat K. Osaki, S. Kimura, M. Kurata: Relaxation of shear and normal stresses in double-step shear deformations for a polystyrene solution. A test of Doi-Edwards theory for polymer rheology, J. Rheol. 25, 549–562 (1981)CrossRef K. Osaki, S. Kimura, M. Kurata: Relaxation of shear and normal stresses in double-step shear deformations for a polystyrene solution. A test of Doi-Edwards theory for polymer rheology, J. Rheol. 25, 549–562 (1981)CrossRef
1.21.
Zurück zum Zitat M.H. Wagner: A constitutive analysis of uniaxial elongational flow data of a low-density polyethylene melt, J. Non-Newtonian Fluid Mech. 4, 39–55 (1978)CrossRef M.H. Wagner: A constitutive analysis of uniaxial elongational flow data of a low-density polyethylene melt, J. Non-Newtonian Fluid Mech. 4, 39–55 (1978)CrossRef
1.22.
Zurück zum Zitat A.C. Papanastasiou, L.E. Scriven, C.W. Macosko: An integral constitutive equation for mixed flows: viscoelastic characterization, J. Rheol. 27, 387–410 (1983)CrossRef A.C. Papanastasiou, L.E. Scriven, C.W. Macosko: An integral constitutive equation for mixed flows: viscoelastic characterization, J. Rheol. 27, 387–410 (1983)CrossRef
1.23.
Zurück zum Zitat T. Samurkas, R.G. Larson, J.M. Dealy: Strong extensional and shearing flows of a branched polyethylene, J. Rheol. 33, 559–578 (1989)CrossRef T. Samurkas, R.G. Larson, J.M. Dealy: Strong extensional and shearing flows of a branched polyethylene, J. Rheol. 33, 559–578 (1989)CrossRef
1.24.
Zurück zum Zitat P.K. Currie: Constitutive equations for polymer melts predicted by the Doi–Edwards and Curtiss-Bird kinetic theory models, J. Non-Newtonian Fluid Mech. 11, 53–68 (1982)CrossRefMATH P.K. Currie: Constitutive equations for polymer melts predicted by the Doi–Edwards and Curtiss-Bird kinetic theory models, J. Non-Newtonian Fluid Mech. 11, 53–68 (1982)CrossRefMATH
1.25.
Zurück zum Zitat M.H. Wagner, A. Demarmels: A constitutive analysis of extensional flows of polyisobutylene, J. Rheol. 34, 943–958 (1990)CrossRef M.H. Wagner, A. Demarmels: A constitutive analysis of extensional flows of polyisobutylene, J. Rheol. 34, 943–958 (1990)CrossRef
1.26.
Zurück zum Zitat O. Urakawa, M. Takahashi, T. Masuda, N.G. Ebrahimi: Damping functions and chain relaxation in uniaxial and biaxial elongation: comparison with the Doi-Edwards theory, Macromolecules 28, 7196–7201 (1995)CrossRef O. Urakawa, M. Takahashi, T. Masuda, N.G. Ebrahimi: Damping functions and chain relaxation in uniaxial and biaxial elongation: comparison with the Doi-Edwards theory, Macromolecules 28, 7196–7201 (1995)CrossRef
1.27.
Zurück zum Zitat B.J.R. Scholtens, P.J.R. Leblans: Nonlinear viscoelasticity of noncrystalline EPDM rubber networks, J. Rheol. 30, 313–335 (1986)CrossRef B.J.R. Scholtens, P.J.R. Leblans: Nonlinear viscoelasticity of noncrystalline EPDM rubber networks, J. Rheol. 30, 313–335 (1986)CrossRef
1.28.
Zurück zum Zitat M.H. Wagner: The nonlinear strain measure of polyisobutylene melt in general biaxial flow and its comparison to the Doi-Edwards model, Rheol. Acta. 29, 594–603 (1990)CrossRef M.H. Wagner: The nonlinear strain measure of polyisobutylene melt in general biaxial flow and its comparison to the Doi-Edwards model, Rheol. Acta. 29, 594–603 (1990)CrossRef
1.29.
Zurück zum Zitat D.S. Pearson, A. Kiss, L. Fetters, M. Doi: Flow-induced birefringence of concentrated polyisoprene solutions, J. Rheol. 33, 517–535 (1989)CrossRef D.S. Pearson, A. Kiss, L. Fetters, M. Doi: Flow-induced birefringence of concentrated polyisoprene solutions, J. Rheol. 33, 517–535 (1989)CrossRef
1.30.
Zurück zum Zitat G. Ianniruberto, G. Marrucci: A simple constitutive equation for entangled polymers with chain stretch, J. Rheol. 45, 1305–1318 (2001)CrossRef G. Ianniruberto, G. Marrucci: A simple constitutive equation for entangled polymers with chain stretch, J. Rheol. 45, 1305–1318 (2001)CrossRef
1.31.
Zurück zum Zitat J. Fang, M. Kröger, H.M. Öttinger: A thermodynamically admissible reptation model for fast flows of entangled polymers: II. Model predictions for shear and extensional flows, J. Rheol. 44, 1293–1316 (2000)CrossRef J. Fang, M. Kröger, H.M. Öttinger: A thermodynamically admissible reptation model for fast flows of entangled polymers: II. Model predictions for shear and extensional flows, J. Rheol. 44, 1293–1316 (2000)CrossRef
1.32.
Zurück zum Zitat T.C.B. McLeish, R.G. Larson: Molecular constitutive equations for a class of branched polymers: the pom-pom polymer, J. Rheol. 42, 81–110 (1998)CrossRef T.C.B. McLeish, R.G. Larson: Molecular constitutive equations for a class of branched polymers: the pom-pom polymer, J. Rheol. 42, 81–110 (1998)CrossRef
1.33.
Zurück zum Zitat T.C.B. McLeish: Molecular rheology of H-polymers, Macromolecules 21, 1062–1070 (1988)CrossRef T.C.B. McLeish: Molecular rheology of H-polymers, Macromolecules 21, 1062–1070 (1988)CrossRef
1.34.
Zurück zum Zitat N.J. Inkson, T.C.B. McLeish, O.G. Harlen, D.J. Groves: Predicting low density polyethylene melt rheology in elongational and shear flows with pom-pom constitutive equations, J. Rheol. 43, 873–896 (1999)CrossRef N.J. Inkson, T.C.B. McLeish, O.G. Harlen, D.J. Groves: Predicting low density polyethylene melt rheology in elongational and shear flows with pom-pom constitutive equations, J. Rheol. 43, 873–896 (1999)CrossRef
1.35.
Zurück zum Zitat R.J. Blackwell, T.C.B. McLeish, O.G. Harlen: Molecular drag-strain coupling in branched polymer melts, J. Rheol. 44, 121–136 (2000)CrossRef R.J. Blackwell, T.C.B. McLeish, O.G. Harlen: Molecular drag-strain coupling in branched polymer melts, J. Rheol. 44, 121–136 (2000)CrossRef
1.36.
Zurück zum Zitat R.G. Owens, T.N. Phillips: Computational Rheology (Imperial College Press, London 2002)CrossRefMATH R.G. Owens, T.N. Phillips: Computational Rheology (Imperial College Press, London 2002)CrossRefMATH
1.37.
Zurück zum Zitat P. Rubio, M.H. Wagner: Letter to the Editor: A note added to "Molecular constitutive equations for a class of branched polymers: The pom-pom model", J. Rheol. 43, 1709–1710 (1999)CrossRef P. Rubio, M.H. Wagner: Letter to the Editor: A note added to "Molecular constitutive equations for a class of branched polymers: The pom-pom model", J. Rheol. 43, 1709–1710 (1999)CrossRef
1.38.
Zurück zum Zitat P. Rubio, M.H. Wagner: LDPE melt rheology and the pom-pom polymer, J. Non-Newtonian Fluid Mech. 92, 245–259 (2000)CrossRefMATH P. Rubio, M.H. Wagner: LDPE melt rheology and the pom-pom polymer, J. Non-Newtonian Fluid Mech. 92, 245–259 (2000)CrossRefMATH
1.39.
Zurück zum Zitat R.J. Blackwell, O.G. Harlen, T.C.B. McLeish: Theoretical linear and non-linear rheology of symmetric treelike polymer melts, Macromolecules 34, 2579–2596 (2001)CrossRef R.J. Blackwell, O.G. Harlen, T.C.B. McLeish: Theoretical linear and non-linear rheology of symmetric treelike polymer melts, Macromolecules 34, 2579–2596 (2001)CrossRef
1.40.
Zurück zum Zitat P.J. Doerpinghaus, D.G. Baird: Accessing the branching architecture of sparsely branched metallocene-catalyzed polyethylenes using the pompom constitutive model, Macromolecules 35, 10087–10095 (2002)CrossRef P.J. Doerpinghaus, D.G. Baird: Accessing the branching architecture of sparsely branched metallocene-catalyzed polyethylenes using the pompom constitutive model, Macromolecules 35, 10087–10095 (2002)CrossRef
1.41.
Zurück zum Zitat W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens: Differential constitutive equations for polymer melts: The extended pom-pom model, J. Rheol. 45, 823–843 (2001)CrossRef W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens: Differential constitutive equations for polymer melts: The extended pom-pom model, J. Rheol. 45, 823–843 (2001)CrossRef
1.42.
Zurück zum Zitat N. Clemeur, R.P.G. Rutgers, B. Debbaut: On the evaluation of some differential formulations for the pom-pom constitutive model, Rheol. Acta. 42, 217–231 (2003) N. Clemeur, R.P.G. Rutgers, B. Debbaut: On the evaluation of some differential formulations for the pom-pom constitutive model, Rheol. Acta. 42, 217–231 (2003)
1.43.
Zurück zum Zitat G. Marrucci, B. de Cindio: The stress relaxation of molten PMMA at large deformations and its theoretical interpretation, Rheol. Acta. 19, 68–75 (1980)CrossRef G. Marrucci, B. de Cindio: The stress relaxation of molten PMMA at large deformations and its theoretical interpretation, Rheol. Acta. 19, 68–75 (1980)CrossRef
1.44.
Zurück zum Zitat M.H. Wagner, J. Schaeffer: Constitutive equations from Gaussian slip-link network theories in polymer melt rheology, Rheol. Acta. 31, 22–31 (1992)CrossRef M.H. Wagner, J. Schaeffer: Constitutive equations from Gaussian slip-link network theories in polymer melt rheology, Rheol. Acta. 31, 22–31 (1992)CrossRef
1.45.
Zurück zum Zitat M.H. Wagner, J. Schaeffer: Rubbers and Polymer melts: Universal aspects of non-linear stress-strain relations, J. Rheol. 37, 643–661 (1993)CrossRef M.H. Wagner, J. Schaeffer: Rubbers and Polymer melts: Universal aspects of non-linear stress-strain relations, J. Rheol. 37, 643–661 (1993)CrossRef
1.46.
Zurück zum Zitat M.H. Wagner: The non-linear strain measure of polymer melts and rubbers: A unifying approach, Makromol. Chem. Macromol. Symp. 68, 95–108 (1993)CrossRef M.H. Wagner: The non-linear strain measure of polymer melts and rubbers: A unifying approach, Makromol. Chem. Macromol. Symp. 68, 95–108 (1993)CrossRef
1.47.
Zurück zum Zitat M.H. Wagner, J. Schaeffer: Assessment of non-linear strain measures for extensional and shearing flows of polymer melts, Rheol. Acta. 33, 506–516 (1994)CrossRef M.H. Wagner, J. Schaeffer: Assessment of non-linear strain measures for extensional and shearing flows of polymer melts, Rheol. Acta. 33, 506–516 (1994)CrossRef
1.48.
Zurück zum Zitat M.H. Wagner, J. Schaeffer: Nonlinear strain measures for general biaxial extension of polymer melts, Rheol. Acta. 36, 1–26 (1992) M.H. Wagner, J. Schaeffer: Nonlinear strain measures for general biaxial extension of polymer melts, Rheol. Acta. 36, 1–26 (1992)
1.49.
Zurück zum Zitat M.H. Wagner, M. Yamaguchi, M. Takahashi: Quantitative assessment of strain hardening of LDPE melts by MSF model, J. Rheol. 47, 779–793 (2003)CrossRef M.H. Wagner, M. Yamaguchi, M. Takahashi: Quantitative assessment of strain hardening of LDPE melts by MSF model, J. Rheol. 47, 779–793 (2003)CrossRef
1.50.
Zurück zum Zitat M.H. Wagner, J. Hepperle, H. Münstedt: Relating molecular structure of model branched polystyrene melts to strain-hardening by molecular stress function theory, J. Rheol. 48, 489–503 (2004)CrossRef M.H. Wagner, J. Hepperle, H. Münstedt: Relating molecular structure of model branched polystyrene melts to strain-hardening by molecular stress function theory, J. Rheol. 48, 489–503 (2004)CrossRef
1.51.
Zurück zum Zitat M.H. Wagner, S. Kheirandish, M. Yamaguchi: Quantitative analysis of melt elongational behavior of LDPE/LLDPE blends, Rheol. Acta 44, 198–218 (2005)CrossRef M.H. Wagner, S. Kheirandish, M. Yamaguchi: Quantitative analysis of melt elongational behavior of LDPE/LLDPE blends, Rheol. Acta 44, 198–218 (2005)CrossRef
1.52.
Zurück zum Zitat M.H. Wagner, S. Kheirandish, K. Koyama, A. Nishioka, A. Minegishi, T. Takahashi: Modeling strain hardening of polydisperse polystyrene melts by molecular stress function theory 44, 235–243 (2005) M.H. Wagner, S. Kheirandish, K. Koyama, A. Nishioka, A. Minegishi, T. Takahashi: Modeling strain hardening of polydisperse polystyrene melts by molecular stress function theory 44, 235–243 (2005)
1.53.
Zurück zum Zitat P.G. de Gennes: Reptation of polymer chain in the presence of fixed obstacles, J. Chem. Phys. 55, 572–579 (1971)CrossRef P.G. de Gennes: Reptation of polymer chain in the presence of fixed obstacles, J. Chem. Phys. 55, 572–579 (1971)CrossRef
1.54.
Zurück zum Zitat G. Marrucci, N. Grizzutti: The free energy function of the Doi-Edwards theory: Analysis of instabilities in stress relaxation, J. Rheol. 27, 433–450 (1983)CrossRef G. Marrucci, N. Grizzutti: The free energy function of the Doi-Edwards theory: Analysis of instabilities in stress relaxation, J. Rheol. 27, 433–450 (1983)CrossRef
1.55.
Zurück zum Zitat G. Marrucci, J.J. Hermans: Non-linear viscoelasticity of concentrated polymeric liquids, Macromolecules 13, 380–387 (1980)CrossRef G. Marrucci, J.J. Hermans: Non-linear viscoelasticity of concentrated polymeric liquids, Macromolecules 13, 380–387 (1980)CrossRef
1.56.
Zurück zum Zitat J. Hepperle: Einfluss der molekularen Struktur auf rheologische Eigenschaften von Polystyrol- und Polycarbonatschmelzen (Shaker, Aachen 2003) J. Hepperle: Einfluss der molekularen Struktur auf rheologische Eigenschaften von Polystyrol- und Polycarbonatschmelzen (Shaker, Aachen 2003)
Metadaten
Titel
Experiment as a Boundary-Value Problem
verfasst von
Ronald Panton
Saeid Kheirandish, Ph.D
Manfred Wagner, Prof.
Copyright-Jahr
2007
DOI
https://doi.org/10.1007/978-3-540-30299-5_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.