Skip to main content

2018 | OriginalPaper | Buchkapitel

Experimental and Numerical Investigation of Triaxial Braid Reinforcements

verfasst von : Boris Duchamp, Yordan Kyosev, Xavier Legrand, Damien Soulat

Erschienen in: Narrow and Smart Textiles

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Triaxial braided reinforcements are extensively used as main constituent materials in various biomedical and composite applications. The material parameters, and the choice of process parameters during the braiding process, have a significant influence on the geometrical and mechanical properties of these reinforcements. In this study, the manufacturing on a braiding loom of triaxial braids with a large range of braiding angle is presented. On these samples geometrical properties, as bias yarn length, crimp, linear mass, are experimentally identified in function of the braiding angle. From uniaxial tests, the specific tensile behavior of these braided fabrics is characterized. These results are compared with analytical models described in the literature. Associated to this experimental approach, the geometry of these triaxial braids is numerically modeled thanks to TexMind Braider software dedicated for three-dimensional creation of braided structures. Comparison between characteristics experimentally identified and computed is analyzed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Desplentere, F., Lomov, S. V., Woerdeman, D. L., Verpoest, I., Wevers, M., & Bogdanovich, A. (2005). Micro-CT characterization of variability in 3D textile architecture. Composites Science and Technology, 65(13), 1920–1930.CrossRef Desplentere, F., Lomov, S. V., Woerdeman, D. L., Verpoest, I., Wevers, M., & Bogdanovich, A. (2005). Micro-CT characterization of variability in 3D textile architecture. Composites Science and Technology, 65(13), 1920–1930.CrossRef
2.
Zurück zum Zitat Naouar, N., Vidal-Salle, E., Schneider, J., Maire, E., & Boisse, P. (2015). 3D composite reinforcement meso F.E. analyses based on X-ray computed tomography. Composite Structures, 132, 1094–1104.CrossRef Naouar, N., Vidal-Salle, E., Schneider, J., Maire, E., & Boisse, P. (2015). 3D composite reinforcement meso F.E. analyses based on X-ray computed tomography. Composite Structures, 132, 1094–1104.CrossRef
3.
Zurück zum Zitat Rahali, Y., Assidi, M., Goda, I., Zghal, A., & Ganghoffer, J.F. (2016). Computation of the effective mechanical properties including nonclassical moduli of 2.5D and 3D interlocks by micromechanical approaches. Composites Part B, 98,194–212. Rahali, Y., Assidi, M., Goda, I., Zghal, A., & Ganghoffer, J.F. (2016). Computation of the effective mechanical properties including nonclassical moduli of 2.5D and 3D interlocks by micromechanical approaches. Composites Part B, 98,194–212.
4.
Zurück zum Zitat Lomov, S. (2011). Modelling the geometry of textile reinforcements for composites: Wisetex. In P. Boisse ( Ed.), Composite Reinforcements for Optimum Performance. Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing. ISBN: 978-1-84569-965-9. Lomov, S. (2011). Modelling the geometry of textile reinforcements for composites: Wisetex. In P. Boisse ( Ed.), Composite Reinforcements for Optimum Performance. Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing. ISBN: 978-1-84569-965-9.
5.
Zurück zum Zitat Long, A., & Brown, L. (2011). Modelling the geometry of textile reinforcements for composites: Texgen. In P. Boisse (Ed.), Composite Reinforcements for Optimum Performance. Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing. ISBN: 978-1-84569-965-9. Long, A., & Brown, L. (2011). Modelling the geometry of textile reinforcements for composites: Texgen. In P. Boisse (Ed.), Composite Reinforcements for Optimum Performance. Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing. ISBN: 978-1-84569-965-9.
6.
Zurück zum Zitat Ning, F., Potluri, P., Yu, W., & Hearle, J. (2016). Geometrical modeling of tubular braided structures using generalized rose curve. Textile Research Journal, 0040517516632471, first published on February 18, 2016. Ning, F., Potluri, P., Yu, W., & Hearle, J. (2016). Geometrical modeling of tubular braided structures using generalized rose curve. Textile Research Journal, 0040517516632471, first published on February 18, 2016.
7.
Zurück zum Zitat Brunnschweiler, D. (1953). Braids and braiding. The Journal of the Textile Institute, 44, 666–686. Brunnschweiler, D. (1953). Braids and braiding. The Journal of the Textile Institute, 44, 666–686.
8.
Zurück zum Zitat Mouritz, A. P., Bannister, M. K., Falzon, P. J., et al. (1999). Review of applications for advanced three-dimensional fibre textile composites. Composites Part A, 30, 1445–1461.CrossRef Mouritz, A. P., Bannister, M. K., Falzon, P. J., et al. (1999). Review of applications for advanced three-dimensional fibre textile composites. Composites Part A, 30, 1445–1461.CrossRef
9.
Zurück zum Zitat Potluri, P., Rawal, A., Rivaldi, M., et al. (2003). Geometrical modelling and control of a triaxial braiding machine for producing 3D preforms. Composites Part A, 34, 481–492.CrossRef Potluri, P., Rawal, A., Rivaldi, M., et al. (2003). Geometrical modelling and control of a triaxial braiding machine for producing 3D preforms. Composites Part A, 34, 481–492.CrossRef
10.
Zurück zum Zitat Potluri, P., Manan, A., Francke, M., et al. (2006). Flexural and torsional behaviour of biaxial and triaxial braided composite structures. Composite Structures, 75, 377–386.CrossRef Potluri, P., Manan, A., Francke, M., et al. (2006). Flexural and torsional behaviour of biaxial and triaxial braided composite structures. Composite Structures, 75, 377–386.CrossRef
11.
Zurück zum Zitat Potluri, P., & Manan, A. (2007). Mechanics of non-orthogonally interlaced textile composites. Composites Part A, 38, 1216–1226.CrossRef Potluri, P., & Manan, A. (2007). Mechanics of non-orthogonally interlaced textile composites. Composites Part A, 38, 1216–1226.CrossRef
12.
Zurück zum Zitat Ayranci, A., & Carey, J. (2010). Predicting the longitudinal elastic modulus of braided tubular composites using a curved unit-cell geometry. Composites Part B, 41, 229–235.CrossRef Ayranci, A., & Carey, J. (2010). Predicting the longitudinal elastic modulus of braided tubular composites using a curved unit-cell geometry. Composites Part B, 41, 229–235.CrossRef
13.
Zurück zum Zitat Bilisik, K. (2013). Three-dimensional braiding for composites: A review. Textile Research Journal, 83, 1414–1436.CrossRef Bilisik, K. (2013). Three-dimensional braiding for composites: A review. Textile Research Journal, 83, 1414–1436.CrossRef
14.
Zurück zum Zitat Branscomb, D., Beale, D., & Broughton, R. (2013). New directions in braiding. Journal of Engineered Fibers and Fabrics, 8, 11–24. Branscomb, D., Beale, D., & Broughton, R. (2013). New directions in braiding. Journal of Engineered Fibers and Fabrics, 8, 11–24.
15.
Zurück zum Zitat Potluri, P. (2012). Braiding. In L. Nicolais, & A. Borzacchiello (Eds.), Wiley encyclopedia of composites (2nd edn.) New York: Wiley. Potluri, P. (2012). Braiding. In L. Nicolais, & A. Borzacchiello (Eds.), Wiley encyclopedia of composites (2nd edn.) New York: Wiley.
16.
Zurück zum Zitat Kessels, J. F. A., & Akkerman, R. (2002). Prediction of the yarn trajectories on complex braided preforms. Composites Part A, 33, 1073–1081.CrossRef Kessels, J. F. A., & Akkerman, R. (2002). Prediction of the yarn trajectories on complex braided preforms. Composites Part A, 33, 1073–1081.CrossRef
17.
Zurück zum Zitat Van Ravenhorst, J. H., & Akkerman, R. (2014). Circular braiding take-up speed generation using inverse kinematics. Composites Part A, 64, 147–158.CrossRef Van Ravenhorst, J. H., & Akkerman, R. (2014). Circular braiding take-up speed generation using inverse kinematics. Composites Part A, 64, 147–158.CrossRef
18.
Zurück zum Zitat Lyons, J., & Pastore, C. M. (2004). Effect of braid structure on yarn cross-sectional shape. Fibers and Polymers, 5, 182–186.CrossRef Lyons, J., & Pastore, C. M. (2004). Effect of braid structure on yarn cross-sectional shape. Fibers and Polymers, 5, 182–186.CrossRef
19.
Zurück zum Zitat Du, G. W., & Popper, P. (1994). Analysis of a circular braiding process for complex shapes. Journal of the Textile Institute, 85, 316–337.CrossRef Du, G. W., & Popper, P. (1994). Analysis of a circular braiding process for complex shapes. Journal of the Textile Institute, 85, 316–337.CrossRef
20.
Zurück zum Zitat Ayranci, C., & Carey, J. (2008). 2D braided composites: A review for stiffness critical applications. Composite Structures, 85, 43–58.CrossRef Ayranci, C., & Carey, J. (2008). 2D braided composites: A review for stiffness critical applications. Composite Structures, 85, 43–58.CrossRef
21.
Zurück zum Zitat Laberge-Lebel, L., & Van Hoa, S. (2007). Manufacturing of braided thermoplastic composites with carbon/nylon commingled fibers. Journal of Composite Materials, 41, 1101–1120.CrossRef Laberge-Lebel, L., & Van Hoa, S. (2007). Manufacturing of braided thermoplastic composites with carbon/nylon commingled fibers. Journal of Composite Materials, 41, 1101–1120.CrossRef
22.
Zurück zum Zitat Birkefeld, K., Roder, M., von Reden, T., et al. (2012). Characterization of biaxial and triaxial braids: Fiber architecture and mechanical properties. Applied Composite Materials, 19, 259–273.CrossRef Birkefeld, K., Roder, M., von Reden, T., et al. (2012). Characterization of biaxial and triaxial braids: Fiber architecture and mechanical properties. Applied Composite Materials, 19, 259–273.CrossRef
23.
Zurück zum Zitat Castejon, L., Miravete, A., & Cuartero, J. (2001). Analytical formulation of (0°, +−α°) braided composites and its application in crashworthiness simulations. Mechanics of Composite Materials and Structures, 8, 219–229.CrossRef Castejon, L., Miravete, A., & Cuartero, J. (2001). Analytical formulation of (0°, +−α°) braided composites and its application in crashworthiness simulations. Mechanics of Composite Materials and Structures, 8, 219–229.CrossRef
24.
Zurück zum Zitat Aggarwal, A., Ramakrishna, S., & Ganesh, V. K. (2002). Predicting the strength of diamond braided composites. Journal of Composite Materials, 36, 625–643.CrossRef Aggarwal, A., Ramakrishna, S., & Ganesh, V. K. (2002). Predicting the strength of diamond braided composites. Journal of Composite Materials, 36, 625–643.CrossRef
25.
Zurück zum Zitat Quek, S. C., Waas, A. M., Shahwanb, K. W., et al. (2003). Analysis of 2D triaxial flat braided textile composites. International Journal of Mechanical Sciences, 45, 1077–1096.CrossRef Quek, S. C., Waas, A. M., Shahwanb, K. W., et al. (2003). Analysis of 2D triaxial flat braided textile composites. International Journal of Mechanical Sciences, 45, 1077–1096.CrossRef
26.
Zurück zum Zitat Goyal, D., & Whitcomb, J. D. (2006). Analysis of stress concentrations in 2*2 braided composites. Journal of Composite Materials, 40, 533–546.CrossRef Goyal, D., & Whitcomb, J. D. (2006). Analysis of stress concentrations in 2*2 braided composites. Journal of Composite Materials, 40, 533–546.CrossRef
27.
Zurück zum Zitat Kier, Z. T., Salvi, A., Theis, G., et al. (2015). Estimating mechanical properties of 2D triaxially braided textile composites based on microstructure properties. Composites Part B, 68, 288–299.CrossRef Kier, Z. T., Salvi, A., Theis, G., et al. (2015). Estimating mechanical properties of 2D triaxially braided textile composites based on microstructure properties. Composites Part B, 68, 288–299.CrossRef
28.
Zurück zum Zitat Hivet, G., & Boisse, P. (2008). Consistent mesoscopic mechanical behaviour model for woven composite reinforcements in biaxial tension. Composites Part B, 39, 345–361.CrossRef Hivet, G., & Boisse, P. (2008). Consistent mesoscopic mechanical behaviour model for woven composite reinforcements in biaxial tension. Composites Part B, 39, 345–361.CrossRef
29.
Zurück zum Zitat Hivet, G. (2013). Vidal-Salle´ E and Boisse P. Analysis of the stress components in a textile composite reinforcement. Journal of Composite Materials, 47, 269–285.CrossRef Hivet, G. (2013). Vidal-Salle´ E and Boisse P. Analysis of the stress components in a textile composite reinforcement. Journal of Composite Materials, 47, 269–285.CrossRef
30.
Zurück zum Zitat Harte, A. M., & Fleck, N. A. (2000). On the mechanics of braided composites in tension. European Journal of Mechanics A/Solids, 19, 259–275.CrossRef Harte, A. M., & Fleck, N. A. (2000). On the mechanics of braided composites in tension. European Journal of Mechanics A/Solids, 19, 259–275.CrossRef
31.
Zurück zum Zitat Hristov, K., Carroll, E. A., Dunn, M., et al. (2004). Mechanical behaviour of circular braids under tensile loads. Textile Research Journal, 74, 20–26.CrossRef Hristov, K., Carroll, E. A., Dunn, M., et al. (2004). Mechanical behaviour of circular braids under tensile loads. Textile Research Journal, 74, 20–26.CrossRef
32.
Zurück zum Zitat Dabiryan, H., & Johari, M. S. (2016). Analysis of the tensile behaviour of tubular braids using energy method, part I: Theoretical analysis. Journal of Textile Institute, 107. Dabiryan, H., & Johari, M. S. (2016). Analysis of the tensile behaviour of tubular braids using energy method, part I: Theoretical analysis. Journal of Textile Institute, 107.
33.
Zurück zum Zitat Del Rosso, S., Lannucci, L., & Curtis, P. T. (2015). Experimental investigation of the mechanical properties of dry microbraids and microbraid reinforced polymer composites. Composite Structures, 125, 509–519.CrossRef Del Rosso, S., Lannucci, L., & Curtis, P. T. (2015). Experimental investigation of the mechanical properties of dry microbraids and microbraid reinforced polymer composites. Composite Structures, 125, 509–519.CrossRef
34.
Zurück zum Zitat Rawal, A., Kumar, R., & Saraswat, H. (2012). Tensile mechanics of braided structures. Textile Research Journal, 82, 1703–1710.CrossRef Rawal, A., Kumar, R., & Saraswat, H. (2012). Tensile mechanics of braided structures. Textile Research Journal, 82, 1703–1710.CrossRef
35.
Zurück zum Zitat Rawal, A., Potluri, P., & Steele, C. (2005). Geometrical modeling of the yarn paths in three dimensional braided structures. Journal of Industrial Textiles, 35, 115–135.CrossRef Rawal, A., Potluri, P., & Steele, C. (2005). Geometrical modeling of the yarn paths in three dimensional braided structures. Journal of Industrial Textiles, 35, 115–135.CrossRef
36.
Zurück zum Zitat Rawal, A., Saraswat, H., & Kumar, R. (2013). Tensile response of tubular braids with an elastic core. Composites Part A, 47, 150–155.CrossRef Rawal, A., Saraswat, H., & Kumar, R. (2013). Tensile response of tubular braids with an elastic core. Composites Part A, 47, 150–155.CrossRef
37.
Zurück zum Zitat Rawal, A., Sibal, A., & Saraswat, H. (2013). Tensile behaviour of regular triaxial braided structures. Mechanics of Materials, 91, 277–289.CrossRef Rawal, A., Sibal, A., & Saraswat, H. (2013). Tensile behaviour of regular triaxial braided structures. Mechanics of Materials, 91, 277–289.CrossRef
38.
Zurück zum Zitat Rawal, A., Saraswat, H., & Sibal, A. (2015). Tensile response of braided structures: A review. Textile Research Journal, 85, 2083–2096.CrossRef Rawal, A., Saraswat, H., & Sibal, A. (2015). Tensile response of braided structures: A review. Textile Research Journal, 85, 2083–2096.CrossRef
39.
Zurück zum Zitat Duchamp, B., Legrand, X., & Soulat, D. (2016). Structural and tensile behaviors of braided reinforcements: Characterization and model. In Y. Kyosev (Ed.), Advances in Braiding Technology Specialized Techniques and Applications, Woodhead Publishing. ISBN: 9780081009260. Duchamp, B., Legrand, X., & Soulat, D. (2016). Structural and tensile behaviors of braided reinforcements: Characterization and model. In Y. Kyosev (Ed.), Advances in Braiding Technology Specialized Techniques and Applications, Woodhead Publishing. ISBN: 9780081009260.
40.
Zurück zum Zitat Magalhaes, R., Subramani, P., Lisner, T., Rana, S., Ghiassi, B., Fangueiro, R., et al. (2016). Development, characterization and analysis of auxetic structures from braided composites and study the influence of material and structural parameters. Composites Part A, 87, 86–97.CrossRef Magalhaes, R., Subramani, P., Lisner, T., Rana, S., Ghiassi, B., Fangueiro, R., et al. (2016). Development, characterization and analysis of auxetic structures from braided composites and study the influence of material and structural parameters. Composites Part A, 87, 86–97.CrossRef
41.
Zurück zum Zitat Subramani, P., Rana, S., Ghiassi, B., Fangueiro, R., Oliveira, D. V., Lourenco, P. B., et al. (2016). Development and characterization of novel auxetic structures based on re-entrant hexagon design produced from braided composites. Composites Part B, 93, 132–142.CrossRef Subramani, P., Rana, S., Ghiassi, B., Fangueiro, R., Oliveira, D. V., Lourenco, P. B., et al. (2016). Development and characterization of novel auxetic structures based on re-entrant hexagon design produced from braided composites. Composites Part B, 93, 132–142.CrossRef
43.
Zurück zum Zitat Risicato, J. V., Kelly, F., Soulat, D., et al. (2015). A complex shaped reinforced thermoplastic composite part made of commingled yarns with integrated sensor. Applied Composite Materials, 22, 81–98.CrossRef Risicato, J. V., Kelly, F., Soulat, D., et al. (2015). A complex shaped reinforced thermoplastic composite part made of commingled yarns with integrated sensor. Applied Composite Materials, 22, 81–98.CrossRef
44.
Zurück zum Zitat Jacquot, P. B., Wang, P., Soulat, D., & Legrand, X. (2016). Analysis of the preforming behaviour of the braided and woven flax/polyamide fabrics. Journal of Industrial Textiles, 46(3), 698–718.CrossRef Jacquot, P. B., Wang, P., Soulat, D., & Legrand, X. (2016). Analysis of the preforming behaviour of the braided and woven flax/polyamide fabrics. Journal of Industrial Textiles, 46(3), 698–718.CrossRef
45.
Zurück zum Zitat Kostar, T. D., & Chou, T. W. (2002). A methodology for Cartesian braiding of three-dimensional shapes and special structures. Journal Materials Science, 37, 2811–2824.CrossRef Kostar, T. D., & Chou, T. W. (2002). A methodology for Cartesian braiding of three-dimensional shapes and special structures. Journal Materials Science, 37, 2811–2824.CrossRef
46.
Zurück zum Zitat Kyosev, Y. (2015). Productivity calculations in braiding. In Y. Kiosev (Ed.), Braiding Technology for Textiles. Woodhead Publishing Series in Textiles. Kyosev, Y. (2015). Productivity calculations in braiding. In Y. Kiosev (Ed.), Braiding Technology for Textiles. Woodhead Publishing Series in Textiles.
47.
Zurück zum Zitat Endruweit, A., & Long, A. C. (2011). A model for the in-plane permeability of triaxially braided reinforcements. Composites Part A, 42, 165–172.CrossRef Endruweit, A., & Long, A. C. (2011). A model for the in-plane permeability of triaxially braided reinforcements. Composites Part A, 42, 165–172.CrossRef
49.
Zurück zum Zitat Byun, J. H., Whitney, T. J., Du, G. W., et al. (1991). Analytical characterization of two-step braided composites. Journal of Composite Materials, 25, 1599–1618.CrossRef Byun, J. H., Whitney, T. J., Du, G. W., et al. (1991). Analytical characterization of two-step braided composites. Journal of Composite Materials, 25, 1599–1618.CrossRef
50.
Zurück zum Zitat Buyn, J. H. (2000). The analytical characterization of 2-D braided textile composites. Composite Science Technology, 60, 705–716.CrossRef Buyn, J. H. (2000). The analytical characterization of 2-D braided textile composites. Composite Science Technology, 60, 705–716.CrossRef
51.
Zurück zum Zitat Ishikawa, T., & Chou, T.-W. (1982). Elastic behaviour of woven hybrid composites. Journal of Composite Materials, 16, 2–19.CrossRef Ishikawa, T., & Chou, T.-W. (1982). Elastic behaviour of woven hybrid composites. Journal of Composite Materials, 16, 2–19.CrossRef
52.
Zurück zum Zitat Duchamp, B., Legrand, X., & Soulat, D. (2016). The tensile behavior of biaxial and triaxial braided fabrics. Journal of Industrial Textiles. Retrieved June 16, 2016, from doi 10.1177/1528083716654469. Duchamp, B., Legrand, X., & Soulat, D. (2016). The tensile behavior of biaxial and triaxial braided fabrics. Journal of Industrial Textiles. Retrieved June 16, 2016, from doi 10.​1177/​1528083716654469​.
53.
Zurück zum Zitat Duchamp, B. (2016). Contribution à l’élaboration de préformes textiles pour le renforcement de réservoir souples. Ph.D. thesis, Université Lille. (to be published, in French). Duchamp, B. (2016). Contribution à l’élaboration de préformes textiles pour le renforcement de réservoir souples. Ph.D. thesis, Université Lille. (to be published, in French).
54.
Zurück zum Zitat Kyosev, Y. (2013). Some computational and modelling aspects about the multifi lament modeling of braided preforms. In: S. Lomov (Ed.), Proceedings of Composites Week@Leuven and TexComp-11 conference. Leuven. Kyosev, Y. (2013). Some computational and modelling aspects about the multifi lament modeling of braided preforms. In: S. Lomov (Ed.), Proceedings of Composites Week@Leuven and TexComp-11 conference. Leuven.
55.
Zurück zum Zitat Kyosev, Y. (2015). Computer assisted design (CAD) software for the design of braided structures. In Y. Kiosev (Ed.), Braiding Technology for Textiles. Woodhead Publishing Series in Textiles. Kyosev, Y. (2015). Computer assisted design (CAD) software for the design of braided structures. In Y. Kiosev (Ed.), Braiding Technology for Textiles. Woodhead Publishing Series in Textiles.
56.
Zurück zum Zitat Kyosev, Y., & Cordes, A. (2016). Geometrical modelling of tubular and flat braids within the jamming limits—verification and limitations. In Y. Kyosev (Ed.), Recent Developments in Braiding and Narrow Weaving. Kyosev, Y., & Cordes, A. (2016). Geometrical modelling of tubular and flat braids within the jamming limits—verification and limitations. In Y. Kyosev (Ed.), Recent Developments in Braiding and Narrow Weaving.
57.
Zurück zum Zitat Kyosev, Y. (2016). Geometrical modeling and computational mechanics tools for braided structures . In Y. Kyosev (Ed.), Advances in Braiding Technology Specialized Techniques and Applications, Woodhead Publishing Series in Textiles. Kyosev, Y. (2016). Geometrical modeling and computational mechanics tools for braided structures . In Y. Kyosev (Ed.), Advances in Braiding Technology Specialized Techniques and Applications, Woodhead Publishing Series in Textiles.
58.
Zurück zum Zitat Kyosev, Y. (2016). Generalized geometric modeling of tubular and flat braided structures with arbitrary floating length and multiple filaments. Textile Research Journal, 86(12), 1270–1279.CrossRef Kyosev, Y. (2016). Generalized geometric modeling of tubular and flat braided structures with arbitrary floating length and multiple filaments. Textile Research Journal, 86(12), 1270–1279.CrossRef
Metadaten
Titel
Experimental and Numerical Investigation of Triaxial Braid Reinforcements
verfasst von
Boris Duchamp
Yordan Kyosev
Xavier Legrand
Damien Soulat
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-69050-6_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.