Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2018

05.07.2018

Experimental Assessment of High Heating Rates in Induction Heating with Temperature-Sensitive Lacquers

verfasst von: N. Vanderesse, B. Larregain, F. Bridier, P. Bocher

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The fast evolving temperature fields at the surface of induction-heated parts were measured by a contactless, optical method based on temperature-sensitive lacquers recorded with a high-speed imaging system. The positions of specific isotherms over time were precisely measured by image analysis. A 4340 steel cylinder and two spur gears of the same material were investigated. One spur gear was treated at high frequency, and the other one at simultaneous dual frequency. In both cases, the temperature started to rise at the root of the teeth and then expanded along the flanks. The heating rates were higher at the tips than at the roots for both treatments, with higher values for the dual-frequency treatment. The layer of transformed material was similar for both treatments, but the transformation temperature varied greatly. It was found to be 50-100 °C higher than the equilibrium values, depending on the local heating rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. Nemkov, Modeling of Induction Hardening. Handbook of Thermal Process Modeling Steels, Cemil Hakan Gur, Jiansheng Pan, 2008 V. Nemkov, Modeling of Induction Hardening. Handbook of Thermal Process Modeling Steels, Cemil Hakan Gur, Jiansheng Pan, 2008
2.
Zurück zum Zitat V. Rudnev, D. Loveless, R.L. Cook, and M. Black, Temperature Measurement. Handbook of Induction Heating, Marcel Dekker, Inc., New York, 2002 V. Rudnev, D. Loveless, R.L. Cook, and M. Black, Temperature Measurement. Handbook of Induction Heating, Marcel Dekker, Inc., New York, 2002
3.
Zurück zum Zitat M. Cotterell, E. Ares, J. Yanes, F. López, P. Hernandez, and G. Peláez, Temperature and Strain Measurement during Chip Formation in Orthogonal Cutting Conditions Applied to Ti-6Al-4V, Proc. Eng., 2013, 63, p 922–930CrossRef M. Cotterell, E. Ares, J. Yanes, F. López, P. Hernandez, and G. Peláez, Temperature and Strain Measurement during Chip Formation in Orthogonal Cutting Conditions Applied to Ti-6Al-4V, Proc. Eng., 2013, 63, p 922–930CrossRef
4.
Zurück zum Zitat J. Codrington, P. Nguyen, S.Y. Ho, and A. Kotousov, Induction Heating Apparatus for High Temperature Testing of Thermo-Mechanical Properties, Appl. Therm. Eng., 2009, 29(14-15), p 2783–2789CrossRef J. Codrington, P. Nguyen, S.Y. Ho, and A. Kotousov, Induction Heating Apparatus for High Temperature Testing of Thermo-Mechanical Properties, Appl. Therm. Eng., 2009, 29(14-15), p 2783–2789CrossRef
5.
Zurück zum Zitat J. Grum, Induction Hardening, Handbook of Residual Stress and Deformation of Steeled, G. Totten, M. Howes, and T. Inoue, Ed., ASM International, Materials Park, 2002, J. Grum, Induction Hardening, Handbook of Residual Stress and Deformation of Steeled, G. Totten, M. Howes, and T. Inoue, Ed., ASM International, Materials Park, 2002,
6.
Zurück zum Zitat W. Jomaa, V. Songmene, and P. Bocher, An Investigation of Machining-Induced Residual Stresses and Microstructure of Induction-Hardened AISI, 4340 Steel, Mater. Manuf. Process., 2016, 31(7), p 838–844CrossRef W. Jomaa, V. Songmene, and P. Bocher, An Investigation of Machining-Induced Residual Stresses and Microstructure of Induction-Hardened AISI, 4340 Steel, Mater. Manuf. Process., 2016, 31(7), p 838–844CrossRef
7.
Zurück zum Zitat D. Hömberg, Q.Z. Liu, J. Montalvo-Urquizo, D. Nadolski, T. Petzold, A. Schmidt, and A. Schulz, Simulation of Multi-Frequency-Induction-Hardening Including Phase Transitions and Mechanical Effects, Finite Elem. Anal. Des., 2016, 121, p 86–100CrossRef D. Hömberg, Q.Z. Liu, J. Montalvo-Urquizo, D. Nadolski, T. Petzold, A. Schmidt, and A. Schulz, Simulation of Multi-Frequency-Induction-Hardening Including Phase Transitions and Mechanical Effects, Finite Elem. Anal. Des., 2016, 121, p 86–100CrossRef
8.
Zurück zum Zitat M. Fisk, L.E. Lindgren, W. Datchary, and V. Deshmukh, Modelling of Induction Hardening in Low Alloy Steels, Finite Elem. Anal. Des., 2018, 144, p 61–75CrossRef M. Fisk, L.E. Lindgren, W. Datchary, and V. Deshmukh, Modelling of Induction Hardening in Low Alloy Steels, Finite Elem. Anal. Des., 2018, 144, p 61–75CrossRef
9.
Zurück zum Zitat H.P. Li, L.F. He, K. Gai, R. Jiang, C.Z. Zhang, and M.S. Li, Numerical Simulation and Experimental Investigation on the Induction Hardening of a Ball Screw, Mater. Des., 2015, 87, p 863–876CrossRef H.P. Li, L.F. He, K. Gai, R. Jiang, C.Z. Zhang, and M.S. Li, Numerical Simulation and Experimental Investigation on the Induction Hardening of a Ball Screw, Mater. Des., 2015, 87, p 863–876CrossRef
10.
Zurück zum Zitat A. Danon, C. Servant, A. Alamo, and J.C. Brachet, Heterogeneous Austenite Grain Growth in 9Cr Martensitic Steels: Influence of the Heating Rate and the Austenitization Temperature, Mater. Sci. Eng. A Struct., 2003, 348(1-2), p 122–132CrossRef A. Danon, C. Servant, A. Alamo, and J.C. Brachet, Heterogeneous Austenite Grain Growth in 9Cr Martensitic Steels: Influence of the Heating Rate and the Austenitization Temperature, Mater. Sci. Eng. A Struct., 2003, 348(1-2), p 122–132CrossRef
11.
Zurück zum Zitat S. Morito, H. Yoshida, T. Maki, and X. Huang, Effect of Block Size on the Strength of Lath Martensite in Low Carbon Steels, Mater. Sci. Eng. A Struct., 2006, 438, p 237–240CrossRef S. Morito, H. Yoshida, T. Maki, and X. Huang, Effect of Block Size on the Strength of Lath Martensite in Low Carbon Steels, Mater. Sci. Eng. A Struct., 2006, 438, p 237–240CrossRef
12.
Zurück zum Zitat P.R.N. Childs, J.R. Greenwood, and C.A. Long, Review of Temperature Measurement, Rev. Sci. Instrum., 2000, 71(8), p 2959–2978CrossRef P.R.N. Childs, J.R. Greenwood, and C.A. Long, Review of Temperature Measurement, Rev. Sci. Instrum., 2000, 71(8), p 2959–2978CrossRef
13.
Zurück zum Zitat ASTM E230/E230M-17, Standard Specification and Temperature-Electromotive Force (EMF) Tables for Standardized Thermocouples, ASTM International, West Conshohocken, PA, 2017. https://www.astm.org/ ASTM E230/E230M-17, Standard Specification and Temperature-Electromotive Force (EMF) Tables for Standardized Thermocouples, ASTM International, West Conshohocken, PA, 2017. https://​www.​astm.​org/​
14.
Zurück zum Zitat M.A. Davies, T. Ueda, R. M’Saoubi, B. Mullany, and A.L. Cooke, On The Measurement of Temperature in Material Removal Processes, CIRP Ann. Manuf. Technol., 2007, 56(2), p 581–604CrossRef M.A. Davies, T. Ueda, R. M’Saoubi, B. Mullany, and A.L. Cooke, On The Measurement of Temperature in Material Removal Processes, CIRP Ann. Manuf. Technol., 2007, 56(2), p 581–604CrossRef
15.
Zurück zum Zitat OMEGA Engineering, OMEGALAQ ® Liquid Temperature Lacquers, St-Eustache, Canada, 2018 OMEGA Engineering, OMEGALAQ ® Liquid Temperature Lacquers, St-Eustache, Canada, 2018
16.
Zurück zum Zitat M. Kranjc, A. Zupanic, D. Miklavcic, and T. Jarm, Numerical analysis and thermographic investigation of induction heating, Int. J. Heat Mass Transf., 2010, 53(17-18), p 3585–3591CrossRef M. Kranjc, A. Zupanic, D. Miklavcic, and T. Jarm, Numerical analysis and thermographic investigation of induction heating, Int. J. Heat Mass Transf., 2010, 53(17-18), p 3585–3591CrossRef
17.
Zurück zum Zitat L. Frans, Paint for Indicating Heat, Patent number US28932928A, United States Patents Office, 1933 L. Frans, Paint for Indicating Heat, Patent number US28932928A, United States Patents Office, 1933
18.
Zurück zum Zitat T. Liu, Pressure- and Temperature-Sensitive Paints, Encyclopedia of Aerospace Engineering, Wiley, Hoboken, 2010 T. Liu, Pressure- and Temperature-Sensitive Paints, Encyclopedia of Aerospace Engineering, Wiley, Hoboken, 2010
19.
Zurück zum Zitat A. Griffin, J. Kittler, T. Windeatt, and G. Matas, Techniques for the Interpretation of Thermal Paint Coated Samples, Pattern Recognition, in Proceedings of the 13th International Conference on 25–29 Aug 1996, vol. 953 (1996), pp. 959–963 A. Griffin, J. Kittler, T. Windeatt, and G. Matas, Techniques for the Interpretation of Thermal Paint Coated Samples, Pattern Recognition, in Proceedings of the 13th International Conference on 25–29 Aug 1996, vol. 953 (1996), pp. 959–963
20.
Zurück zum Zitat M.K.D. Smith and D.G. Marriott, Apparatus and Method for the Calibration of Thermal Paint, Patent number 5720554, United States Patents Office, 1998 M.K.D. Smith and D.G. Marriott, Apparatus and Method for the Calibration of Thermal Paint, Patent number 5720554, United States Patents Office, 1998
21.
Zurück zum Zitat M.D.W. Smith, Interpretation of Thermal Paint, Patent number 6434267, United States Patents Office, 2002 M.D.W. Smith, Interpretation of Thermal Paint, Patent number 6434267, United States Patents Office, 2002
22.
Zurück zum Zitat T. Kato and H. Fujii, PVD Film Method for Measuring the Temperature Distribution in Cutting Tools, J. Eng. Ind., 1996, 118(1), p 117–122CrossRef T. Kato and H. Fujii, PVD Film Method for Measuring the Temperature Distribution in Cutting Tools, J. Eng. Ind., 1996, 118(1), p 117–122CrossRef
23.
Zurück zum Zitat S. LoCasto, E. LoValvo, and F. Micari, Measurement of Temperature Distribution Within Tool in Metal Cutting. Experimental Tests and Numerical Analysis, J. Mech. Work. Technol., 1989, 20, p 35–46CrossRef S. LoCasto, E. LoValvo, and F. Micari, Measurement of Temperature Distribution Within Tool in Metal Cutting. Experimental Tests and Numerical Analysis, J. Mech. Work. Technol., 1989, 20, p 35–46CrossRef
24.
Zurück zum Zitat S. Kato, K. Yamaguchi, Y. Watanabe, and Y. Hiraiwa, Measurement of Temperature Distribution Within Tool Using Powders of Constant Melting Point, J. Eng. Ind., 1976, 98(2), p 607–613CrossRef S. Kato, K. Yamaguchi, Y. Watanabe, and Y. Hiraiwa, Measurement of Temperature Distribution Within Tool Using Powders of Constant Melting Point, J. Eng. Ind., 1976, 98(2), p 607–613CrossRef
25.
Zurück zum Zitat V. Ostafiev, A. Kharkevich, K. Weinert, and S. Ostafiev, Tool Heat Transfer in Orthogonal Metal Cutting, J. Manuf. Sci. Eng., 1999, 121(4), p 541–549CrossRef V. Ostafiev, A. Kharkevich, K. Weinert, and S. Ostafiev, Tool Heat Transfer in Orthogonal Metal Cutting, J. Manuf. Sci. Eng., 1999, 121(4), p 541–549CrossRef
26.
Zurück zum Zitat J. Stenekes, P. Koshy, and M.A. Elbestawi, A Simple Method for the Estimation of Laser Absorptivity Using Heat-Sensitive Paints, Meas. Sci. Technol., 2009, 20(11), p 117002CrossRef J. Stenekes, P. Koshy, and M.A. Elbestawi, A Simple Method for the Estimation of Laser Absorptivity Using Heat-Sensitive Paints, Meas. Sci. Technol., 2009, 20(11), p 117002CrossRef
27.
Zurück zum Zitat K. Nakakita and K. Asai, Method and Apparatus for Measuring Heat Flux Distribution on Object Surface Using Temperature-Sensitive Paint, United number 7069169, United States Patents Office, 2006 K. Nakakita and K. Asai, Method and Apparatus for Measuring Heat Flux Distribution on Object Surface Using Temperature-Sensitive Paint, United number 7069169, United States Patents Office, 2006
28.
Zurück zum Zitat J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, Fiji: An Open-Source Platform for Biological-Image Analysis, Nat. Methods, 2012, 9(7), p 676–682CrossRef J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, Fiji: An Open-Source Platform for Biological-Image Analysis, Nat. Methods, 2012, 9(7), p 676–682CrossRef
29.
Zurück zum Zitat B. Larregain, N. Vanderesse, F. Bridier, P. Bocher, and P. Arkinson, Method for Accurate Surface Temperature Measurements During Fast Induction Heating, J. Mater. Eng. Perform., 2013, 22(7), p 1907–1913CrossRef B. Larregain, N. Vanderesse, F. Bridier, P. Bocher, and P. Arkinson, Method for Accurate Surface Temperature Measurements During Fast Induction Heating, J. Mater. Eng. Perform., 2013, 22(7), p 1907–1913CrossRef
31.
Zurück zum Zitat S. Baker and I. Matthews, Lucas–Kanade 20 Years On: A Unifying Framework, Int. J. Comput. Vision, 2004, 56(3), p 221–255CrossRef S. Baker and I. Matthews, Lucas–Kanade 20 Years On: A Unifying Framework, Int. J. Comput. Vision, 2004, 56(3), p 221–255CrossRef
32.
Zurück zum Zitat S. Beucher and F. Meyer, The Morphological Approach of Segmentation: The Watershed Transformation, Mathematical Morphology in Image Processing, E. Dougherty, Ed., CRC Press, London, 1992, p 433–481 S. Beucher and F. Meyer, The Morphological Approach of Segmentation: The Watershed Transformation, Mathematical Morphology in Image Processing, E. Dougherty, Ed., CRC Press, London, 1992, p 433–481
33.
Zurück zum Zitat A.X. Falcao, J. Stolfi, and R. de Alencar Lotufo, The Image Foresting Transform: Theory, Algorithms, and Applications, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26(1), p 19–29CrossRef A.X. Falcao, J. Stolfi, and R. de Alencar Lotufo, The Image Foresting Transform: Theory, Algorithms, and Applications, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26(1), p 19–29CrossRef
34.
Zurück zum Zitat G. Borgefors, Distance Transformations in Digital Images, Comput. Vis. Graph. Image Process., 1986, 34(3), p 344–371CrossRef G. Borgefors, Distance Transformations in Digital Images, Comput. Vis. Graph. Image Process., 1986, 34(3), p 344–371CrossRef
35.
Zurück zum Zitat R. Dougherty and K.H. Kunzelmann, Computing Local Thickness of 3D Structures with ImageJ, Microsc. Microanal., 2007, 13(Supplement S02), p 1678–1679 R. Dougherty and K.H. Kunzelmann, Computing Local Thickness of 3D Structures with ImageJ, Microsc. Microanal., 2007, 13(Supplement S02), p 1678–1679
36.
Zurück zum Zitat V. Rudnev and G.E. Totten, ASM Handbook Volume 4C: Induction Heating and Heat Treatment, ASM International, Materials Park, 2014 V. Rudnev and G.E. Totten, ASM Handbook Volume 4C: Induction Heating and Heat Treatment, ASM International, Materials Park, 2014
37.
Zurück zum Zitat T. Inoue, H. Inoue, F. Ikuta, and F. Horino, Simulation of Dual Frequency Induction Hardening Process of a Gear Wheel, in Proceedings of the Third International Conference on Quenching and Control of Distortion (ASM International, 1999), pp. 243–250 T. Inoue, H. Inoue, F. Ikuta, and F. Horino, Simulation of Dual Frequency Induction Hardening Process of a Gear Wheel, in Proceedings of the Third International Conference on Quenching and Control of Distortion (ASM International, 1999), pp. 243–250
38.
Zurück zum Zitat J. Orlich, A. Rose, and P. Wieast, Atlas zur Wärmebehandlung der Stähle. Band 3: Zeit—Temperatur—Austenitisierung, Verlag Stahleisen mbH (1973) J. Orlich, A. Rose, and P. Wieast, Atlas zur Wärmebehandlung der Stähle. Band 3: Zeit—Temperatur—Austenitisierung, Verlag Stahleisen mbH (1973)
39.
Zurück zum Zitat A. Constant, G. Henry, and J.-C. Charbonnier, Principes de base des traitements thermiques thermomécaniques et thermochimiques des aciers, PYC Editions, Paris, 1992 A. Constant, G. Henry, and J.-C. Charbonnier, Principes de base des traitements thermiques thermomécaniques et thermochimiques des aciers, PYC Editions, Paris, 1992  
40.
Zurück zum Zitat W.D. Callister, Fundamentals of Materials Science and Engineering, Wiley, London, 2000 W.D. Callister, Fundamentals of Materials Science and Engineering, Wiley, London, 2000
41.
Zurück zum Zitat G. Krauss, Steels: Processing, Structure, and Performance, ASM International, Materials Park, 2015 G. Krauss, Steels: Processing, Structure, and Performance, ASM International, Materials Park, 2015
42.
Zurück zum Zitat M. Spezzapria, A.G. Settimi, L. Pezzato, M.F. Novella, M. Forzan, F. Dughiero, S. Bruschi, A. Ghiotti, K. Brunelli, and M. Dabala, Effect of Prior Microstructure and Heating Rate on the Austenitization Kinetics of 39NiCrMo3 Steel. Steel Res. Int., 2017, 88(5), p 1600267CrossRef M. Spezzapria, A.G. Settimi, L. Pezzato, M.F. Novella, M. Forzan, F. Dughiero, S. Bruschi, A. Ghiotti, K. Brunelli, and M. Dabala, Effect of Prior Microstructure and Heating Rate on the Austenitization Kinetics of 39NiCrMo3 Steel. Steel Res. Int., 2017, 88(5), p 1600267CrossRef
43.
Zurück zum Zitat N. Li, J. Lin, D.S. Balint, and T.A. Dean, Modelling of Austenite Formation During Heating in Boron Steel Hot Stamping Processes, J. Mater. Process. Technol., 2016, 237, p 394–401CrossRef N. Li, J. Lin, D.S. Balint, and T.A. Dean, Modelling of Austenite Formation During Heating in Boron Steel Hot Stamping Processes, J. Mater. Process. Technol., 2016, 237, p 394–401CrossRef
44.
Zurück zum Zitat Y.Y. Meshkov and E.V. Pereloma, The Effect of Heating Rate on Reverse Transformations in Steels and Fe-Ni-Based Alloys, Phase Transformations in Steels, Woodhead Publishing, Cambridge, 2012, p 581–618 Y.Y. Meshkov and E.V. Pereloma, The Effect of Heating Rate on Reverse Transformations in Steels and Fe-Ni-Based Alloys, Phase Transformations in Steels, Woodhead Publishing, Cambridge, 2012, p 581–618
45.
Zurück zum Zitat F.L.G. Oliveira, M.S. Andrade, and A.B. Cota, Kinetics of Austenite Formation During Continuous Heating in a Low Carbon Steel, Mater. Charact., 2007, 58(3), p 256–261CrossRef F.L.G. Oliveira, M.S. Andrade, and A.B. Cota, Kinetics of Austenite Formation During Continuous Heating in a Low Carbon Steel, Mater. Charact., 2007, 58(3), p 256–261CrossRef
46.
Zurück zum Zitat M.Q. Macedo, A.B. Cota, and F.G.D. Araujo, The Kinetics of Austenite Formation at High Heating Rates, Rem Rev. Esc. Minas, 2011, 64(2), p 163–167CrossRef M.Q. Macedo, A.B. Cota, and F.G.D. Araujo, The Kinetics of Austenite Formation at High Heating Rates, Rem Rev. Esc. Minas, 2011, 64(2), p 163–167CrossRef
Metadaten
Titel
Experimental Assessment of High Heating Rates in Induction Heating with Temperature-Sensitive Lacquers
verfasst von
N. Vanderesse
B. Larregain
F. Bridier
P. Bocher
Publikationsdatum
05.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3499-z

Weitere Artikel der Ausgabe 8/2018

Journal of Materials Engineering and Performance 8/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.