Skip to main content
Erschienen in: Acta Mechanica Sinica 5/2019

22.05.2019 | Research Paper

Experimental investigation of a passive self-tuning resonator based on a beam-slider structure

verfasst von: Liuding Yu, Lihua Tang, Tiejun Yang

Erschienen in: Acta Mechanica Sinica | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work investigates a self-tuning resonator composed of a slender clamped–clamped steel beam and a freely movable slider. The clamped–clamped beam exhibits hardening nonlinearity when it vibrates in large amplitude, providing a broad bandwidth of dynamic response. The moving slider changes the mass distribution of the whole structure, and provides a passive self-tuning approach for capturing the high-energy orbit of the structure. In the case without inclination, adequate inertial force that mainly depends on the vibration amplitude of the beam and the position of the slider can drive the slider to move from the side toward the centre of the beam. This movement amplifies the beam response when the excitation frequency is below 37 Hz in our prototyped device. In the multi-orbit frequency range (28–37 Hz), the self-tuning and magnification of beam response can be achieved when the slider is initially placed in an appropriate position on the beam. Once the beam is disturbed, however, the desired response in the high-energy orbit can be lost easily and cannot be reacquired without external assistance. In an improved design with a small inclination, the introduced small gravitational component enables the slider to move from the higher side toward the lower side when the beam amplitude is small. This property sacrifices the less efficient self-tuning region below 25 Hz, but can enable the beam to acquire and maintain the high-energy orbit response in the multi-orbit frequency range (28–39 Hz), which is resistant to disturbance. The proposed resonator in this paper not only broadens the frequency bandwidth of dynamic response, but also enables capture and maintenance of the high-energy orbit in a completely passive way. Such a passive self-tuning structure presents an advantage in the design of broadband vibration energy-harvesting systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tang, L., Yang, Y., Soh, C.K.: Broadband vibration energy harvesting techniques. In: Elvin, N., Eturk, A. (eds.) Advances in Energy Harvesting Methods. Springer, London (2013) Tang, L., Yang, Y., Soh, C.K.: Broadband vibration energy harvesting techniques. In: Elvin, N., Eturk, A. (eds.) Advances in Energy Harvesting Methods. Springer, London (2013)
2.
Zurück zum Zitat Daqaq, M.F., Masana, R., Erturk, A., et al.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 040801 (2014)CrossRef Daqaq, M.F., Masana, R., Erturk, A., et al.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 040801 (2014)CrossRef
3.
Zurück zum Zitat Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011)CrossRef Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011)CrossRef
4.
Zurück zum Zitat Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013)CrossRef Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013)CrossRef
5.
Zurück zum Zitat Lan, C.B., Tang, L.H., Qin, W.Y.: Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations. Eur. Phys. J. Appl. Phys. 79, 20902 (2017)CrossRef Lan, C.B., Tang, L.H., Qin, W.Y.: Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations. Eur. Phys. J. Appl. Phys. 79, 20902 (2017)CrossRef
6.
Zurück zum Zitat Ramlan, R., Brennan, M.J., Mace, B.R., et al.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59, 545–558 (2009)CrossRef Ramlan, R., Brennan, M.J., Mace, B.R., et al.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59, 545–558 (2009)CrossRef
7.
Zurück zum Zitat Zhou, S.X., Cao, J.Y., Inman, D.J., et al.: Impact-induced high-energy orbits of nonlinear energy harvesters. Appl. Phys. Lett. 106, 093901 (2015)CrossRef Zhou, S.X., Cao, J.Y., Inman, D.J., et al.: Impact-induced high-energy orbits of nonlinear energy harvesters. Appl. Phys. Lett. 106, 093901 (2015)CrossRef
8.
Zurück zum Zitat Wang, G.Q., Liao, W.H.: A bistable piezoelectric oscillator with an elastic magnifier for energy harvesting enhancement. J. Intell. Mater. Syst. Struct. 28, 392–407 (2017)CrossRef Wang, G.Q., Liao, W.H.: A bistable piezoelectric oscillator with an elastic magnifier for energy harvesting enhancement. J. Intell. Mater. Syst. Struct. 28, 392–407 (2017)CrossRef
9.
Zurück zum Zitat Mallick, D., Amann, A., Roy, S.: Surfing the high energy output branch of nonlinear energy harvesters. Phys. Rev. Lett. 117, 197701 (2016)CrossRef Mallick, D., Amann, A., Roy, S.: Surfing the high energy output branch of nonlinear energy harvesters. Phys. Rev. Lett. 117, 197701 (2016)CrossRef
10.
Zurück zum Zitat Masuda, A., Senda, A., Sanada, T., et al.: Global stabilization of high-energy response for a Duffing-type wideband nonlinear energy harvester via self-excitation and entrainment. J. Intell. Mater. Syst. Struct. 24, 1598–1612 (2013)CrossRef Masuda, A., Senda, A., Sanada, T., et al.: Global stabilization of high-energy response for a Duffing-type wideband nonlinear energy harvester via self-excitation and entrainment. J. Intell. Mater. Syst. Struct. 24, 1598–1612 (2013)CrossRef
11.
Zurück zum Zitat Sebald, G., Kuwano, H., Guyomar, D., et al.: Experimental Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20, 102001 (2011)CrossRef Sebald, G., Kuwano, H., Guyomar, D., et al.: Experimental Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20, 102001 (2011)CrossRef
12.
Zurück zum Zitat Sebald, G., Kuwano, H., Guyomar, D., et al.: Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20, 075022 (2011)CrossRef Sebald, G., Kuwano, H., Guyomar, D., et al.: Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20, 075022 (2011)CrossRef
13.
Zurück zum Zitat Gu, L., Livermore, C.: Passive self-tuning energy harvester for extracting energy from rotational motion. Appl. Phys. Lett. 97, 081904 (2010)CrossRef Gu, L., Livermore, C.: Passive self-tuning energy harvester for extracting energy from rotational motion. Appl. Phys. Lett. 97, 081904 (2010)CrossRef
14.
Zurück zum Zitat Jo, S.E., Kim, M.S., Kim, Y.J.: A resonant frequency switching scheme of a cantilever based on polyvinylidene fluoride for vibration energy harvesting. Smart Mater. Struct. 21, 015007 (2012)CrossRef Jo, S.E., Kim, M.S., Kim, Y.J.: A resonant frequency switching scheme of a cantilever based on polyvinylidene fluoride for vibration energy harvesting. Smart Mater. Struct. 21, 015007 (2012)CrossRef
15.
Zurück zum Zitat Miller, L.M.: Micro-scale piezoelectric vibration energy harvesting: from fixed-frequency to adaptable-frequency devices. [Ph.D. Thesis]. University of California, Berkeley (2012) Miller, L.M.: Micro-scale piezoelectric vibration energy harvesting: from fixed-frequency to adaptable-frequency devices. [Ph.D. Thesis]. University of California, Berkeley (2012)
16.
Zurück zum Zitat Miller, L.M., Pillatsch, P., Halvorsen, E., et al.: Experimental passive self-tuning behaviour of a beam resonator with sliding proof mass. J. Sound Vib. 332, 7142–7152 (2013)CrossRef Miller, L.M., Pillatsch, P., Halvorsen, E., et al.: Experimental passive self-tuning behaviour of a beam resonator with sliding proof mass. J. Sound Vib. 332, 7142–7152 (2013)CrossRef
17.
Zurück zum Zitat Pillatsch, P., Miller, L.M., Halvorsen, E., et al.: Self-tuning behaviour of a clamped-clamped beam with sliding proof mass for broadband energy harvesting. J. Phys: Conf. Ser. 476, 012068 (2013) Pillatsch, P., Miller, L.M., Halvorsen, E., et al.: Self-tuning behaviour of a clamped-clamped beam with sliding proof mass for broadband energy harvesting. J. Phys: Conf. Ser. 476, 012068 (2013)
18.
Zurück zum Zitat Gregg, C.G., Pillatsch, P., Wright, P.K.: Passively self-tuning piezoelectric energy harvesting system. J. Phys: Conf. Ser. 557, 012123 (2014) Gregg, C.G., Pillatsch, P., Wright, P.K.: Passively self-tuning piezoelectric energy harvesting system. J. Phys: Conf. Ser. 557, 012123 (2014)
19.
Zurück zum Zitat Staaf, L.G.H., Smith, A.D., Köhler, E., et al.: Achieving increased bandwidth for 4 degree of freedom self-tuning energy harvester. J. Sound Vib. 420, 165–173 (2018)CrossRef Staaf, L.G.H., Smith, A.D., Köhler, E., et al.: Achieving increased bandwidth for 4 degree of freedom self-tuning energy harvester. J. Sound Vib. 420, 165–173 (2018)CrossRef
20.
Zurück zum Zitat Staaf, L.G.H., Smith, A.D., Lundgren, P., et al.: Effective piezoelectric energy harvesting with bandwidth enhancement by assymetry augmented self-tuning of conjoined cantilevers. Int. J. Mech. Sci. 150, 1–11 (2019)CrossRef Staaf, L.G.H., Smith, A.D., Lundgren, P., et al.: Effective piezoelectric energy harvesting with bandwidth enhancement by assymetry augmented self-tuning of conjoined cantilevers. Int. J. Mech. Sci. 150, 1–11 (2019)CrossRef
21.
Zurück zum Zitat Krack, M., Aboulfotoh, N., Twiefel, J., et al.: Toward understanding the self-adaptive dynamics of a harmonically forced beam with a sliding mass. Arch. Appl. Mech. 87, 699–720 (2016)CrossRef Krack, M., Aboulfotoh, N., Twiefel, J., et al.: Toward understanding the self-adaptive dynamics of a harmonically forced beam with a sliding mass. Arch. Appl. Mech. 87, 699–720 (2016)CrossRef
22.
Zurück zum Zitat Wagg, D., Neild, S.: Nonlinear Vibration with Control. Springer, London (2009)MATH Wagg, D., Neild, S.: Nonlinear Vibration with Control. Springer, London (2009)MATH
Metadaten
Titel
Experimental investigation of a passive self-tuning resonator based on a beam-slider structure
verfasst von
Liuding Yu
Lihua Tang
Tiejun Yang
Publikationsdatum
22.05.2019
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 5/2019
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-019-00868-9

Weitere Artikel der Ausgabe 5/2019

Acta Mechanica Sinica 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.