Skip to main content
Erschienen in: Meccanica 1/2021

06.01.2021

Experimental investigation of spreading and receding behaviors of Newtonian and viscoelastic droplet impacts on inclined dry surfaces

verfasst von: M. Norouzi, M. K. Sheykhian, M. M. Shahmardan, A. Shahbani-Zahiri

Erschienen in: Meccanica | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Drop impact on solid surfaces are widely used in oil and gas industries, surface painting, hot surfaces cooling, and agricultural products spraying. In this study, spreading and receding factor related to non-Newtonian (Boger) fluid droplets on dry inclined surfaces (such as Plexiglas and stainless steel) was laboratory tested and compared with Newtonian fluids (water, glycerol and their solution). Here, drop impacts were investigated for two impact angles (60° and 75°) at Weber numbers ranging from 245 to 545. The study aimed at evaluating the effects of impact velocity, impact angle, surface wettability, fluid viscosity, and elasticity on the dynamic behaviors of Newtonian and Boger droplets in spreading and receding stages. The results showed that with an increase in the impact velocity (growth of We), the drop was further expanded, the spreading velocity was increased, and the value and velocity of receding were incremented. By decreasing the drop impact angle, the effects of impact velocity and fluid viscosity on spreading and receding velocities were reduced at the back of the impact point. In the front zone, the drop reached maximum length of spreading and minimum length of receding over a longer period by decreasing the impact angle. On the other hand, with a decrease in the fluid viscosity, spreading velocity was increased, and maximum spreading occurred over a longer period. The surface wettability also played an important role in the receding stage for droplets with low viscosities. As fluid elasticity rose, both velocity and maximum spreading were reduced, while the value and velocity of receding were increased.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Jung S (2011) Fluid characterisation and drop impact in inkjet printing for organic semiconductor devices. University of Cambridge Jung S (2011) Fluid characterisation and drop impact in inkjet printing for organic semiconductor devices. University of Cambridge
2.
Zurück zum Zitat Mostaghimi J, Chandra S (2018) Droplet impact and solidification in plasma spraying. Handb Therm Sci Eng 2967–3008 Mostaghimi J, Chandra S (2018) Droplet impact and solidification in plasma spraying. Handb Therm Sci Eng 2967–3008
3.
Zurück zum Zitat Cao Y, Wu Z, Xu Z (2014) Effects of rainfall on aircraft aerodynamics. Prog Aerosp Sci 71:85–127CrossRef Cao Y, Wu Z, Xu Z (2014) Effects of rainfall on aircraft aerodynamics. Prog Aerosp Sci 71:85–127CrossRef
4.
Zurück zum Zitat Khan MA, Baseer M, Shakoor A (2016) Effects of temperature and droplet size on the ignition delay of diesel and bio-diesel blends. In: International conference on industrial engineering and operations management, Detroit, Michigan, USA, pp 594–601 Khan MA, Baseer M, Shakoor A (2016) Effects of temperature and droplet size on the ignition delay of diesel and bio-diesel blends. In: International conference on industrial engineering and operations management, Detroit, Michigan, USA, pp 594–601
5.
Zurück zum Zitat Iqbal S, Ali A, Ashraf M (2018) Blood droplet dynamics and its forensic implication in crime scene investigation. Forensic Res Criminol Int J 6:81–84CrossRef Iqbal S, Ali A, Ashraf M (2018) Blood droplet dynamics and its forensic implication in crime scene investigation. Forensic Res Criminol Int J 6:81–84CrossRef
6.
Zurück zum Zitat Pasandideh-Fard M, Qiao Y, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluids 8:650–659CrossRef Pasandideh-Fard M, Qiao Y, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluids 8:650–659CrossRef
7.
Zurück zum Zitat Kang B, Lee D (2000) On the dynamic behavior of a liquid droplet impacting upon an inclined heated surface. Exp Fluids 29:380–387CrossRef Kang B, Lee D (2000) On the dynamic behavior of a liquid droplet impacting upon an inclined heated surface. Exp Fluids 29:380–387CrossRef
8.
Zurück zum Zitat Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto solid, dry surfaces. Exp Fluids 33:112–124CrossRef Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto solid, dry surfaces. Exp Fluids 33:112–124CrossRef
9.
Zurück zum Zitat Reznik S, Yarin A (2002) Spreading of a viscous drop due to gravity and capillarity on a horizontal or an inclined dry wall. Phys Fluids 14:118–132MathSciNetCrossRef Reznik S, Yarin A (2002) Spreading of a viscous drop due to gravity and capillarity on a horizontal or an inclined dry wall. Phys Fluids 14:118–132MathSciNetCrossRef
10.
Zurück zum Zitat Clanet C, Béguin C, Richard D, Quéré D (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208CrossRef Clanet C, Béguin C, Richard D, Quéré D (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208CrossRef
11.
Zurück zum Zitat Ukiwe C, Kwok DY (2005) On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir 21:666–673CrossRef Ukiwe C, Kwok DY (2005) On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir 21:666–673CrossRef
12.
Zurück zum Zitat Šikalo Š, Tropea C, Ganić E (2005) Impact of droplets onto inclined surfaces. J Colloid Interface Sci 286:661–669CrossRef Šikalo Š, Tropea C, Ganić E (2005) Impact of droplets onto inclined surfaces. J Colloid Interface Sci 286:661–669CrossRef
13.
Zurück zum Zitat Roisman IV, Horvat K, Tropea C (2006) Spray impact: rim transverse instability initiating fingering and splash, and description of a secondary spray. Phys Fluids 18:1–19MathSciNetCrossRef Roisman IV, Horvat K, Tropea C (2006) Spray impact: rim transverse instability initiating fingering and splash, and description of a secondary spray. Phys Fluids 18:1–19MathSciNetCrossRef
14.
Zurück zum Zitat Lunkad SF, Buwa VV, Nigam K (2007) Numerical simulations of drop impact and spreading on horizontal and inclined surfaces. Chem Eng Sci 62:7214–7224CrossRef Lunkad SF, Buwa VV, Nigam K (2007) Numerical simulations of drop impact and spreading on horizontal and inclined surfaces. Chem Eng Sci 62:7214–7224CrossRef
15.
Zurück zum Zitat Vadillo D, Soucemarianadin A, Delattre C, Roux D (2009) Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces. Phys Fluids 21:1–8CrossRef Vadillo D, Soucemarianadin A, Delattre C, Roux D (2009) Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces. Phys Fluids 21:1–8CrossRef
16.
Zurück zum Zitat Cui J, Chen X, Wang F, Gong X, Yu Z (2009) Study of liquid droplets impact on dry inclined surface. Asia Pac J Chem Eng 4:643–648CrossRef Cui J, Chen X, Wang F, Gong X, Yu Z (2009) Study of liquid droplets impact on dry inclined surface. Asia Pac J Chem Eng 4:643–648CrossRef
17.
Zurück zum Zitat Antonini C, Amirfazli A, Marengo M (2012) Drop impact and wettability: from hydrophilic to superhydrophobic surfaces. Phys Fluids 24:1–13CrossRef Antonini C, Amirfazli A, Marengo M (2012) Drop impact and wettability: from hydrophilic to superhydrophobic surfaces. Phys Fluids 24:1–13CrossRef
18.
Zurück zum Zitat Andrade R, Skurtys O, Osorio F (2012) Experimental study of drop impacts and spreading on epicarps: effect of fluid properties. J Food Eng 109:430–437CrossRef Andrade R, Skurtys O, Osorio F (2012) Experimental study of drop impacts and spreading on epicarps: effect of fluid properties. J Food Eng 109:430–437CrossRef
19.
Zurück zum Zitat Roisman IV (2009) Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys Fluids 21:1–11MATHCrossRef Roisman IV (2009) Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys Fluids 21:1–11MATHCrossRef
20.
Zurück zum Zitat Scheller BL, Bousfield DW (1995) Newtonian drop impact with a solid surface. AIChE J 41:1357–1367CrossRef Scheller BL, Bousfield DW (1995) Newtonian drop impact with a solid surface. AIChE J 41:1357–1367CrossRef
21.
Zurück zum Zitat Liang G, Guo Y, Shen S, Yu H (2014) A study of a single liquid drop impact on inclined wetted surfaces. Acta Mech 225:3353–3363CrossRef Liang G, Guo Y, Shen S, Yu H (2014) A study of a single liquid drop impact on inclined wetted surfaces. Acta Mech 225:3353–3363CrossRef
22.
Zurück zum Zitat Liang G, Guo Y, Yang Y, Zhen N, Shen S (2013) Spreading and splashing during a single drop impact on an inclined wetted surface. Acta Mech 224:2993–3004CrossRef Liang G, Guo Y, Yang Y, Zhen N, Shen S (2013) Spreading and splashing during a single drop impact on an inclined wetted surface. Acta Mech 224:2993–3004CrossRef
23.
Zurück zum Zitat Yeong YH, Burton J, Loth E, Bayer IS (2014) Drop impact and rebound dynamics on an inclined superhydrophobic surface. Langmuir 30:12027–12038CrossRef Yeong YH, Burton J, Loth E, Bayer IS (2014) Drop impact and rebound dynamics on an inclined superhydrophobic surface. Langmuir 30:12027–12038CrossRef
24.
Zurück zum Zitat LeClear S, LeClear J, Park K-C, Choi W (2016) Drop impact on inclined superhydrophobic surfaces. J Colloid Interface Sci 461:114–121CrossRef LeClear S, LeClear J, Park K-C, Choi W (2016) Drop impact on inclined superhydrophobic surfaces. J Colloid Interface Sci 461:114–121CrossRef
25.
Zurück zum Zitat Choudhury R, Choi J, Yang S, Kim Y-J, Lee D (2017) Maximum spreading of liquid drop on various substrates with different wettabilities. Appl Surf Sci 415:149–154CrossRef Choudhury R, Choi J, Yang S, Kim Y-J, Lee D (2017) Maximum spreading of liquid drop on various substrates with different wettabilities. Appl Surf Sci 415:149–154CrossRef
26.
Zurück zum Zitat Tang C, Qin M, Weng X, Zhang X, Zhang P et al (2017) Dynamics of droplet impact on solid surface with different roughness. Int J Multiph Flow 96:56–69CrossRef Tang C, Qin M, Weng X, Zhang X, Zhang P et al (2017) Dynamics of droplet impact on solid surface with different roughness. Int J Multiph Flow 96:56–69CrossRef
27.
Zurück zum Zitat Xu J, Chen Y, Xie J (2018) Non-dimensional numerical study of droplet impacting on heterogeneous hydrophilicity/hydrophobicity surface. Int J Heat Mass Transf 116:951–968CrossRef Xu J, Chen Y, Xie J (2018) Non-dimensional numerical study of droplet impacting on heterogeneous hydrophilicity/hydrophobicity surface. Int J Heat Mass Transf 116:951–968CrossRef
28.
Zurück zum Zitat Rafaı¨ S, Bonn D (2005) Spreading of non-Newtonian fluids and surfactant solutions on solid surfaces. Phys A Stat Mech Its Appl 358:58–67CrossRef Rafaı¨ S, Bonn D (2005) Spreading of non-Newtonian fluids and surfactant solutions on solid surfaces. Phys A Stat Mech Its Appl 358:58–67CrossRef
29.
Zurück zum Zitat German G, Bertola V (2009) Impact of shear-thinning and yield-stress drops on solid substrates. J Phys Condens Matter 21:1–16CrossRef German G, Bertola V (2009) Impact of shear-thinning and yield-stress drops on solid substrates. J Phys Condens Matter 21:1–16CrossRef
30.
Zurück zum Zitat An SM, Lee SY (2012) Observation of the spreading and receding behavior of a shear-thinning liquid drop impacting on dry solid surfaces. Exp Therm Fluid Sci 37:37–45CrossRef An SM, Lee SY (2012) Observation of the spreading and receding behavior of a shear-thinning liquid drop impacting on dry solid surfaces. Exp Therm Fluid Sci 37:37–45CrossRef
31.
Zurück zum Zitat Singh S, Dandapat B (2013) Spreading of a non-Newtonian liquid drop over a homogeneous rough surface. Coll Surf A Physicochem Eng Asp 419:228–232CrossRef Singh S, Dandapat B (2013) Spreading of a non-Newtonian liquid drop over a homogeneous rough surface. Coll Surf A Physicochem Eng Asp 419:228–232CrossRef
32.
Zurück zum Zitat Bertola V, Wang M (2015) Dynamic contact angle of dilute polymer solution drops impacting on a hydrophobic surface. Coll Surf A Physicochem Eng Asp 481:600–608CrossRef Bertola V, Wang M (2015) Dynamic contact angle of dilute polymer solution drops impacting on a hydrophobic surface. Coll Surf A Physicochem Eng Asp 481:600–608CrossRef
33.
Zurück zum Zitat Lampe J, DiLalla R, Grimaldi J, Rothstein JP (2005) Impact dynamics of drops on thin films of viscoelastic wormlike micelle solutions. J Non-Newton Fluid Mech 125(1):11–23CrossRef Lampe J, DiLalla R, Grimaldi J, Rothstein JP (2005) Impact dynamics of drops on thin films of viscoelastic wormlike micelle solutions. J Non-Newton Fluid Mech 125(1):11–23CrossRef
34.
Zurück zum Zitat Williams DL, Kuhn AT, Amann MA, Hausinger MB, Konarik MM, Nesselrode EI (2010) Computerised measurement of contact angles. Galvanotechnik 101(11):2502 Williams DL, Kuhn AT, Amann MA, Hausinger MB, Konarik MM, Nesselrode EI (2010) Computerised measurement of contact angles. Galvanotechnik 101(11):2502
35.
Zurück zum Zitat Mandani S, Norouzi M, Shahmardan MM (2018) An experimental investigation on impact process of Boger drops onto solid surfaces. Korea-Aust Rheol J 30:99–108CrossRef Mandani S, Norouzi M, Shahmardan MM (2018) An experimental investigation on impact process of Boger drops onto solid surfaces. Korea-Aust Rheol J 30:99–108CrossRef
36.
Zurück zum Zitat Vélez-Cordero JR, Sámano D, Zenit R (2012) Study of the properties of bubbly flows in Boger-type fluids. J Non-Newton Fluid Mech 175:1–9CrossRef Vélez-Cordero JR, Sámano D, Zenit R (2012) Study of the properties of bubbly flows in Boger-type fluids. J Non-Newton Fluid Mech 175:1–9CrossRef
Metadaten
Titel
Experimental investigation of spreading and receding behaviors of Newtonian and viscoelastic droplet impacts on inclined dry surfaces
verfasst von
M. Norouzi
M. K. Sheykhian
M. M. Shahmardan
A. Shahbani-Zahiri
Publikationsdatum
06.01.2021
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 1/2021
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-020-01285-0

Weitere Artikel der Ausgabe 1/2021

Meccanica 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.