Skip to main content
Erschienen in: Experiments in Fluids 12/2022

01.12.2022 | Research Article

Experimental investigation on the degradation of turbulent friction drag reduction over semi-circular riblets

verfasst von: Wenfeng Li, Shenghong Peng, Hengdong Xi, Wolfgang Schröder

Erschienen in: Experiments in Fluids | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Experimental investigations of turbulent boundary-layer flows over a semi-circular riblet surface were conducted to study the mechanisms of friction drag reduction. Particle-image velocimetry (PIV) was performed to analyze the statistics of the turbulent boundary layer and the structural properties of the large-scale motions and hotwire anemometry (HWA) was conducted to determine the energy spectra of the near-wall turbulent structures. The skin friction coefficients varied from drag reduction of −5.75% via 0.3% to 10.7% drag increase for riblet spacings in inner units of 17, 31.3, and 50.4 at three freestream velocities. The analyses of the near-wall flow structures indicate that the streamwise coherence is enhanced in the drag reduction regime, while the spatial correlation of the near-wall turbulent flow structures is reduced in the drag neutral and increase regimes. The streamwise energy spectra indicate that in the near-wall region, the energy content is increased by coherent structures at wavelength in inner units in the range of 100–300 for the drag increase regime.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adrian RJ, Meinhart CD, Tomkins CD (2000) Vortex organization in the outer region of the turbulent boundary layer. J Fluid Mech 422:1–54MathSciNetMATHCrossRef Adrian RJ, Meinhart CD, Tomkins CD (2000) Vortex organization in the outer region of the turbulent boundary layer. J Fluid Mech 422:1–54MathSciNetMATHCrossRef
Zurück zum Zitat Atkinson C, Buchmann NA, Amili O, Soria J (2014) On the appropriate filtering of piv measurements of turbulent shear flows. Exp Fluids 55(1):1–15CrossRef Atkinson C, Buchmann NA, Amili O, Soria J (2014) On the appropriate filtering of piv measurements of turbulent shear flows. Exp Fluids 55(1):1–15CrossRef
Zurück zum Zitat Bai H, Zhou Y, Zhang W, Xu S, Wang Y, Antonia R (2014) Active control of a turbulent boundary layer based on local surface perturbation. J Fluid Mech 750:316–354CrossRef Bai H, Zhou Y, Zhang W, Xu S, Wang Y, Antonia R (2014) Active control of a turbulent boundary layer based on local surface perturbation. J Fluid Mech 750:316–354CrossRef
Zurück zum Zitat Bechert D, Bartenwerfer M (1989) The viscous flow on surfaces with longitudinal ribs. J Fluid Mech 206:105–129CrossRef Bechert D, Bartenwerfer M (1989) The viscous flow on surfaces with longitudinal ribs. J Fluid Mech 206:105–129CrossRef
Zurück zum Zitat Bechert DW, Bruse M, Hage W, Van der Hoeven JGT, Hoppe G (1997) Experiments on drag-reduction surfaces and their optimization with an adjustable geometry. J Fluid Mech 338:59–87CrossRef Bechert DW, Bruse M, Hage W, Van der Hoeven JGT, Hoppe G (1997) Experiments on drag-reduction surfaces and their optimization with an adjustable geometry. J Fluid Mech 338:59–87CrossRef
Zurück zum Zitat Benedict L, Gould R (1996) Towards better uncertainty estimates for turbulence statistics. Exp Fluids 22:129–136CrossRef Benedict L, Gould R (1996) Towards better uncertainty estimates for turbulence statistics. Exp Fluids 22:129–136CrossRef
Zurück zum Zitat Chauhan K, Philip J, De Silva CM, Hutchins N, Marusic I (2014) The turbulent/non-turbulent interface and entrainment in a boundary layer. J Fluid Mech 742:119–151CrossRef Chauhan K, Philip J, De Silva CM, Hutchins N, Marusic I (2014) The turbulent/non-turbulent interface and entrainment in a boundary layer. J Fluid Mech 742:119–151CrossRef
Zurück zum Zitat Choi K-S (1989) Near-wall wall structure of a turbulent boundary layer with riblets. J Fluid Mech 208:417–458CrossRef Choi K-S (1989) Near-wall wall structure of a turbulent boundary layer with riblets. J Fluid Mech 208:417–458CrossRef
Zurück zum Zitat Chung D, Hutchins N, Schultz MP, Flack KA (2021) Predicting the drag of rough surfaces. Annu Rev Fluid Mech 53:439–471MATHCrossRef Chung D, Hutchins N, Schultz MP, Flack KA (2021) Predicting the drag of rough surfaces. Annu Rev Fluid Mech 53:439–471MATHCrossRef
Zurück zum Zitat Daniello RJ, Waterhouse NE, Rothstein JP (2009) Drag reduction in turbulent flows over superhydrophobic surfaces. Phys Fluids 21(8):085103MATHCrossRef Daniello RJ, Waterhouse NE, Rothstein JP (2009) Drag reduction in turbulent flows over superhydrophobic surfaces. Phys Fluids 21(8):085103MATHCrossRef
Zurück zum Zitat Debisschop J, Nieuwstadt F (1996) Turbulent boundary layer in an adverse pressure gradient-effectiveness of riblets. AIAA J 34(5):932–937CrossRef Debisschop J, Nieuwstadt F (1996) Turbulent boundary layer in an adverse pressure gradient-effectiveness of riblets. AIAA J 34(5):932–937CrossRef
Zurück zum Zitat Endrikat S, Modesti D, García-Mayoral R, Hutchins N, Chung D (2021) Influence of riblet shapes on the occurrence of kelvin-helmholtz rollers. J Fluid Mech 913:A37MathSciNetMATHCrossRef Endrikat S, Modesti D, García-Mayoral R, Hutchins N, Chung D (2021) Influence of riblet shapes on the occurrence of kelvin-helmholtz rollers. J Fluid Mech 913:A37MathSciNetMATHCrossRef
Zurück zum Zitat Endrikat S, Modesti D, MacDonald M, García-Mayoral R, Hutchins N, Chung D (2020) Direct numerical simulations of turbulent flow over various riblet shapes in minimal-span channels. Flow, Turbulence and Combustion, pp 1–29 Endrikat S, Modesti D, MacDonald M, García-Mayoral R, Hutchins N, Chung D (2020) Direct numerical simulations of turbulent flow over various riblet shapes in minimal-span channels. Flow, Turbulence and Combustion, pp 1–29
Zurück zum Zitat Garcia-Mayoral R, Jiménez J (2011) Drag reduction by riblets Philosophical transactions of the Royal society A: Mathematical, physical and engineering Sciences 369(1940):1412–1427 Garcia-Mayoral R, Jiménez J (2011) Drag reduction by riblets Philosophical transactions of the Royal society A: Mathematical, physical and engineering Sciences 369(1940):1412–1427
Zurück zum Zitat Garcia-Mayoral R, Jimenez J (2011) Hydrodynamic stability and breakdown of the viscous regime over riblets. J Fluid Mech 678:317–347MATHCrossRef Garcia-Mayoral R, Jimenez J (2011) Hydrodynamic stability and breakdown of the viscous regime over riblets. J Fluid Mech 678:317–347MATHCrossRef
Zurück zum Zitat Gatti D, Güttler A, Frohnapfel B, Tropea C (2015) Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow. Exp Fluids 56(5):110CrossRef Gatti D, Güttler A, Frohnapfel B, Tropea C (2015) Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow. Exp Fluids 56(5):110CrossRef
Zurück zum Zitat Gouder K, Potter M, Morrison JF (2013) Turbulent friction drag reduction using electroactive polymer and electromagnetically driven surfaces. Exp Fluids 54:1–12CrossRef Gouder K, Potter M, Morrison JF (2013) Turbulent friction drag reduction using electroactive polymer and electromagnetically driven surfaces. Exp Fluids 54:1–12CrossRef
Zurück zum Zitat Guangyao C, Chong P, Di W, Qingqing Y, Jinjun W (2019) Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer. Chin J Aeronaut 32(11):2433–2442CrossRef Guangyao C, Chong P, Di W, Qingqing Y, Jinjun W (2019) Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer. Chin J Aeronaut 32(11):2433–2442CrossRef
Zurück zum Zitat Hirt G, Thome M (2008) Rolling of functional metallic surface structures. CIRP annals 57(1):317–320CrossRef Hirt G, Thome M (2008) Rolling of functional metallic surface structures. CIRP annals 57(1):317–320CrossRef
Zurück zum Zitat Hou J, Hokmabad BV, Ghaemi S (2017) Three-dimensional measurement of turbulent flow over a riblet surface. Exp Therm Fluid Sci 85:229–239CrossRef Hou J, Hokmabad BV, Ghaemi S (2017) Three-dimensional measurement of turbulent flow over a riblet surface. Exp Therm Fluid Sci 85:229–239CrossRef
Zurück zum Zitat Hutchins N, Nickels TB, Marusic I, Chong M (2009) Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech 635:103–136MATHCrossRef Hutchins N, Nickels TB, Marusic I, Chong M (2009) Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech 635:103–136MATHCrossRef
Zurück zum Zitat Kasagi N, Suzuki Y, Fukagata K (2009) Microelectromechanical Systems-Based Feedback Control of Turbulence for Skin Friction Reduction. Annual Rev Fluid Mech 41:231–251MATHCrossRef Kasagi N, Suzuki Y, Fukagata K (2009) Microelectromechanical Systems-Based Feedback Control of Turbulence for Skin Friction Reduction. Annual Rev Fluid Mech 41:231–251MATHCrossRef
Zurück zum Zitat Lee C, Kim C-J (2011) Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. Phys Rev Lett 106(1):014502CrossRef Lee C, Kim C-J (2011) Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. Phys Rev Lett 106(1):014502CrossRef
Zurück zum Zitat Lee S-J, Lee S-H (2001) Flow field analysis of a turbulent boundary layer over a riblet surface. Exp Fluids 30(2):153–166CrossRef Lee S-J, Lee S-H (2001) Flow field analysis of a turbulent boundary layer over a riblet surface. Exp Fluids 30(2):153–166CrossRef
Zurück zum Zitat Li W, Roggenkamp D, Paakkari V, Klaas M, Soria J, Schröder W (2020) Analysis of a drag reduced flat plate turbulent boundary layer via uniform momentum zones. Aerosp Sci Technol 96:105552CrossRef Li W, Roggenkamp D, Paakkari V, Klaas M, Soria J, Schröder W (2020) Analysis of a drag reduced flat plate turbulent boundary layer via uniform momentum zones. Aerosp Sci Technol 96:105552CrossRef
Zurück zum Zitat Li Z, Hu B, Lan S, Zhang J, Huang J (2015) Control of turbulent channel flow using a plasma-based body force. Comput Fluids 119:26–36CrossRef Li Z, Hu B, Lan S, Zhang J, Huang J (2015) Control of turbulent channel flow using a plasma-based body force. Comput Fluids 119:26–36CrossRef
Zurück zum Zitat Ligrani P, Bradshaw P (1987) Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes. Exp Fluids 5(6):407–417CrossRef Ligrani P, Bradshaw P (1987) Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes. Exp Fluids 5(6):407–417CrossRef
Zurück zum Zitat Luchini P, Manzo F, Pozzi A (1991) Resistance of a grooved surface to parallel flow and cross-flow. J Fluid Mech 228:87–109MATH Luchini P, Manzo F, Pozzi A (1991) Resistance of a grooved surface to parallel flow and cross-flow. J Fluid Mech 228:87–109MATH
Zurück zum Zitat Mamori H, Yamaguchi K, Sasamori M, Iwamoto K, Murata A (2019) Dual-plane stereoscopic piv measurement of vortical structure in turbulent channel flow on sinusoidal riblet surface. Eur J Mech-B/Fluids 74:99–110CrossRef Mamori H, Yamaguchi K, Sasamori M, Iwamoto K, Murata A (2019) Dual-plane stereoscopic piv measurement of vortical structure in turbulent channel flow on sinusoidal riblet surface. Eur J Mech-B/Fluids 74:99–110CrossRef
Zurück zum Zitat Martin S, Bhushan B (2014) Fluid flow analysis of a shark-inspired microstructure. J Fluid Mech 756:5–29CrossRef Martin S, Bhushan B (2014) Fluid flow analysis of a shark-inspired microstructure. J Fluid Mech 756:5–29CrossRef
Zurück zum Zitat Medjnoun T, Vanderwel C, Ganapathisubramani B (2018) Characteristics of turbulent boundary layers over smooth surfaces with spanwise heterogeneities. J Fluid Mech 838:516–543MathSciNetMATHCrossRef Medjnoun T, Vanderwel C, Ganapathisubramani B (2018) Characteristics of turbulent boundary layers over smooth surfaces with spanwise heterogeneities. J Fluid Mech 838:516–543MathSciNetMATHCrossRef
Zurück zum Zitat Monty J, Dogan E, Hanson R, Scardino A, Ganapathisubramani B, Hutchins N (2016) An assessment of the ship drag penalty arising from light calcareous tubeworm fouling. Biofouling 32(4):451–464CrossRef Monty J, Dogan E, Hanson R, Scardino A, Ganapathisubramani B, Hutchins N (2016) An assessment of the ship drag penalty arising from light calcareous tubeworm fouling. Biofouling 32(4):451–464CrossRef
Zurück zum Zitat Nugroho B, Hutchins N, Monty JP (2013) Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. Inter J Heat Fluid Flow 41:90–102CrossRef Nugroho B, Hutchins N, Monty JP (2013) Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. Inter J Heat Fluid Flow 41:90–102CrossRef
Zurück zum Zitat Perry A, Li JD (1990) Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers. J Fluid Mech 218:405–438CrossRef Perry A, Li JD (1990) Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers. J Fluid Mech 218:405–438CrossRef
Zurück zum Zitat Raayai-Ardakani S, McKinley GH (2017) Drag reduction using wrinkled surfaces in high reynolds number laminar boundary layer flows. Phys Fluids 29(9):093605CrossRef Raayai-Ardakani S, McKinley GH (2017) Drag reduction using wrinkled surfaces in high reynolds number laminar boundary layer flows. Phys Fluids 29(9):093605CrossRef
Zurück zum Zitat Rosenberg BJ, Hultmark M, Vallikivi M, Bailey S, Smits AJ (2013) Turbulence spectra in smooth- and rough-wall pipe flow at extreme reynolds numbers. J Fluid Mech 731:46–63MATHCrossRef Rosenberg BJ, Hultmark M, Vallikivi M, Bailey S, Smits AJ (2013) Turbulence spectra in smooth- and rough-wall pipe flow at extreme reynolds numbers. J Fluid Mech 731:46–63MATHCrossRef
Zurück zum Zitat Saxton-Fox T, McKeon BJ (2017) Coherent structures, uniform momentum zones and the streamwise energy spectrum in wall-bounded turbulent flows. J Fluid Mech 826:R6MathSciNetMATHCrossRef Saxton-Fox T, McKeon BJ (2017) Coherent structures, uniform momentum zones and the streamwise energy spectrum in wall-bounded turbulent flows. J Fluid Mech 826:R6MathSciNetMATHCrossRef
Zurück zum Zitat Schlatter P, Örlü R (2010) Assessment of direct numerical simulation data of turbulent boundary layers. J Fluid Mech 659:116–126MATHCrossRef Schlatter P, Örlü R (2010) Assessment of direct numerical simulation data of turbulent boundary layers. J Fluid Mech 659:116–126MATHCrossRef
Zurück zum Zitat Schrauf G, Gölling B, Wood N. KATnet - Key Aerodynamic Technologies for Aircraft Performance Improvement. In 5th Community Aeronautical Days, Wien, Austria, (2006) Schrauf G, Gölling B, Wood N. KATnet - Key Aerodynamic Technologies for Aircraft Performance Improvement. In 5th Community Aeronautical Days, Wien, Austria, (2006)
Zurück zum Zitat Schultz MP, Flack KA (2007) The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J Fluid Mech 580:381–405MATHCrossRef Schultz MP, Flack KA (2007) The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J Fluid Mech 580:381–405MATHCrossRef
Zurück zum Zitat Soria J (1996) An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Exp Thermal Fluid Sci 12(2):221–233CrossRef Soria J (1996) An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Exp Thermal Fluid Sci 12(2):221–233CrossRef
Zurück zum Zitat Spalart PR, McLean JD (2011) Drag reduction: enticing turbulence, and then an industry. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369(1940):1556–1569 Spalart PR, McLean JD (2011) Drag reduction: enticing turbulence, and then an industry. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369(1940):1556–1569
Zurück zum Zitat Szodruch J. Viscous drag reduction on transport aircraft. AIAA Paper, 1991-685, (1991) Szodruch J. Viscous drag reduction on transport aircraft. AIAA Paper, 1991-685, (1991)
Zurück zum Zitat Tiainen J, Grönman A, Jaatinen-Värri A, Pyy L (2020) Effect of non-ideally manufactured riblets on airfoil and wind turbine performance. Renew Energ 155:79–89CrossRef Tiainen J, Grönman A, Jaatinen-Värri A, Pyy L (2020) Effect of non-ideally manufactured riblets on airfoil and wind turbine performance. Renew Energ 155:79–89CrossRef
Zurück zum Zitat Townsend A. The structure of turbulent shear flow. Cambridge university press, (1980) Townsend A. The structure of turbulent shear flow. Cambridge university press, (1980)
Zurück zum Zitat Walsh M. Turbulent boundary layer drag reduction using riblets. AIAA Paper, 1982-169, (1982) Walsh M. Turbulent boundary layer drag reduction using riblets. AIAA Paper, 1982-169, (1982)
Zurück zum Zitat Walsh M (1983) Riblets as a viscous drag reduction technique. AIAA J 21:485–486CrossRef Walsh M (1983) Riblets as a viscous drag reduction technique. AIAA J 21:485–486CrossRef
Zurück zum Zitat Walsh M, Lindemann A. Optimization and application of riblets for turbulent drag reduction. AIAA Paper, 1984-347, (1984) Walsh M, Lindemann A. Optimization and application of riblets for turbulent drag reduction. AIAA Paper, 1984-347, (1984)
Zurück zum Zitat Westerweel J, Scarano F (2005) Universal Outlier Detection for PIV Data. Exp Fluids 39:1096–1100CrossRef Westerweel J, Scarano F (2005) Universal Outlier Detection for PIV Data. Exp Fluids 39:1096–1100CrossRef
Zurück zum Zitat Wong CW, Cheng X, Fan D, Li W, Zhou Y (2021) Friction drag reduction based on a proportional-derivative control scheme. Phys Fluids 33(7):075115CrossRef Wong CW, Cheng X, Fan D, Li W, Zhou Y (2021) Friction drag reduction based on a proportional-derivative control scheme. Phys Fluids 33(7):075115CrossRef
Zurück zum Zitat Wu Y, Christensen KT (2010) Spatial structure of a turbulent boundary layer with irregular surface roughness. J Fluid Mech 655:380–418MATHCrossRef Wu Y, Christensen KT (2010) Spatial structure of a turbulent boundary layer with irregular surface roughness. J Fluid Mech 655:380–418MATHCrossRef
Zurück zum Zitat Xu F, Zhong S, Zhang S (2019) Statistical analysis of vortical structures in turbulent boundary layer over directional grooved surface pattern with spanwise heterogeneity. Phys Fluids 31(8):085110CrossRef Xu F, Zhong S, Zhang S (2019) Statistical analysis of vortical structures in turbulent boundary layer over directional grooved surface pattern with spanwise heterogeneity. Phys Fluids 31(8):085110CrossRef
Zurück zum Zitat Zi-Liang Zhang (2019) Ming-Ming, Zhang, Chang, Cai, Yu, and Cheng. Characteristics of large- and small-scale structures in the turbulent boundary layer over a drag-reducing riblet surface: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234(3):796–807 Zi-Liang Zhang (2019) Ming-Ming, Zhang, Chang, Cai, Yu, and Cheng. Characteristics of large- and small-scale structures in the turbulent boundary layer over a drag-reducing riblet surface: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234(3):796–807
Metadaten
Titel
Experimental investigation on the degradation of turbulent friction drag reduction over semi-circular riblets
verfasst von
Wenfeng Li
Shenghong Peng
Hengdong Xi
Wolfgang Schröder
Publikationsdatum
01.12.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 12/2022
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-022-03534-2

Weitere Artikel der Ausgabe 12/2022

Experiments in Fluids 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.