Skip to main content
Erschienen in: Experiments in Fluids 7/2016

01.07.2016 | Research Article

Experimental research on thermocapillary migration of drops by using digital holographic interferometry

verfasst von: Shuoting Zhang, Li Duan, Qi Kang

Erschienen in: Experiments in Fluids | Ausgabe 7/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The thermocapillary migration of drops in a rectangular cell, with a heated top wall and a cooled bottom wall, was investigated experimentally on the ground. The rectangular test cell was 70 mm high, with a horizontal cross section of 40 mm × 40 mm. In the present experiment, 30 cSt silicon oil was used as the continuous phase, and a water–ethanol mixture was used as the drop phase, respectively. The drops ranged in size from 1.87 to 6.94 mm in diameter and were injected into the continuous phase, where the temperature gradients ranged from 0.193 to 0.484 °C mm−1. In order to measure the temperature distribution of the liquid, a digital holographic interferometry was used, which was non-contact, full-field, and in-situ. The holograms were recorded, and then the corresponding wrapped phase distributions images were numerically reconstructed. The temperature distribution of the continuous phase liquid in the cell had been obtained following the unwrapping. Also, through an algebra layer analysis, the temperature distribution around the drop during the thermocapillary migration was obtained. As a result, the drop was colder than the continuous phase liquid, and a thermal wake existed behind the drop. The influence of convective transport on the drop migration was also investigated for the Marangoni number in the range of 7–174. With the increasing of the Marangoni number, the dimensionless interface temperature difference decreased, which was caused by the convective transport enhanced results in the drop thermocapillary migration velocity becoming decreased. The data were compared with previous space experiments to explain the phenomena of the drop migration. Finally, with the increasing Marangoni numbers, the length of the thermal wake region increased, and the thermal wake region became extended.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akhmetov RG (2004) An asymptotic expansion of the solution to the convective diffusion problem in the trail to the rear of a droplet. Comput Math Math Phys 44(6):1007–1023MathSciNet Akhmetov RG (2004) An asymptotic expansion of the solution to the convective diffusion problem in the trail to the rear of a droplet. Comput Math Math Phys 44(6):1007–1023MathSciNet
Zurück zum Zitat Balasubramaniam R, Chai AT (1987) Thermocapillary migration of droplets: an exact solution for small Marangoni numbers. J Colloid Interface Sci 119(2):531–538CrossRef Balasubramaniam R, Chai AT (1987) Thermocapillary migration of droplets: an exact solution for small Marangoni numbers. J Colloid Interface Sci 119(2):531–538CrossRef
Zurück zum Zitat Balasubramaniam R, Subramaniam RS (1996) Thermocapillary bubble migration-thermal boundary layers for large Marangoni numbers. Int J Multiph Flow 22(3):593–612CrossRefMATH Balasubramaniam R, Subramaniam RS (1996) Thermocapillary bubble migration-thermal boundary layers for large Marangoni numbers. Int J Multiph Flow 22(3):593–612CrossRefMATH
Zurück zum Zitat Balasubramaniam R, Subramanian RS (2000) The migration of a drop in a uniform temperature gradient at large Marangoni numbers. Phys Fluids (1994-present) 12(4):733–743CrossRefMATH Balasubramaniam R, Subramanian RS (2000) The migration of a drop in a uniform temperature gradient at large Marangoni numbers. Phys Fluids (1994-present) 12(4):733–743CrossRefMATH
Zurück zum Zitat Balasubramaniam R, Lacy CE, Woniak G, Subramanian RS (1996) Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity. Phys Fluids (1994-present) 8(4):872–880CrossRef Balasubramaniam R, Lacy CE, Woniak G, Subramanian RS (1996) Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity. Phys Fluids (1994-present) 8(4):872–880CrossRef
Zurück zum Zitat Duan L, Kang Q, Sun ZW, Hu L, Cui HL, Lin H, Li GP (2008) The real-time Mach–Zehnder interferometer used in space experiment. Microgr Sci Technol 20(2):91–98CrossRef Duan L, Kang Q, Sun ZW, Hu L, Cui HL, Lin H, Li GP (2008) The real-time Mach–Zehnder interferometer used in space experiment. Microgr Sci Technol 20(2):91–98CrossRef
Zurück zum Zitat Frolovskaya O, Nir A, Lavrenteva OM (2006) Stationary regimes of axisymmetric thermal wake interaction of two buoyant drops at low Reynolds and high Peclet number. Phys Fluids (1994-present) 18(7):072103CrossRef Frolovskaya O, Nir A, Lavrenteva OM (2006) Stationary regimes of axisymmetric thermal wake interaction of two buoyant drops at low Reynolds and high Peclet number. Phys Fluids (1994-present) 18(7):072103CrossRef
Zurück zum Zitat Hadland PH, Balasubramaniam R, Wozniak G, Subramanian RS (1999) Thermocapillary migration of bubbles and drops at moderate to large Marangoni number and moderate Reynolds number in reduced gravity. Exp Fluids 26(3):240–248CrossRef Hadland PH, Balasubramaniam R, Wozniak G, Subramanian RS (1999) Thermocapillary migration of bubbles and drops at moderate to large Marangoni number and moderate Reynolds number in reduced gravity. Exp Fluids 26(3):240–248CrossRef
Zurück zum Zitat Hähnel M, Delitzsch V, Eckelmann H (1989) The motion of droplets in a vertical temperature gradient. Phys Fluids A Fluid Dyn (1989–1993) 1(9):1460–1466CrossRef Hähnel M, Delitzsch V, Eckelmann H (1989) The motion of droplets in a vertical temperature gradient. Phys Fluids A Fluid Dyn (1989–1993) 1(9):1460–1466CrossRef
Zurück zum Zitat Kang Q, Cui HL, Hu L, Duan L (2008) On-board experimental study of bubble thermocapillary migration in a recoverable satellite. Microgr Sci Technol 20(2):67–71CrossRef Kang Q, Cui HL, Hu L, Duan L (2008) On-board experimental study of bubble thermocapillary migration in a recoverable satellite. Microgr Sci Technol 20(2):67–71CrossRef
Zurück zum Zitat Lavrenteva OM, Nir A (2003) Axisymmetric thermal wake interaction of two drops in a gravity field at low Reynolds and high Peclet numbers. Phys Fluids (1994-present) 15(10):3006–3014CrossRefMATH Lavrenteva OM, Nir A (2003) Axisymmetric thermal wake interaction of two drops in a gravity field at low Reynolds and high Peclet numbers. Phys Fluids (1994-present) 15(10):3006–3014CrossRefMATH
Zurück zum Zitat Ma X (1999) Numerical simulation of thermocapillary drop motion with internal circulation. Numer Heat Transfer Part A Appl 35(3):291–309CrossRef Ma X (1999) Numerical simulation of thermocapillary drop motion with internal circulation. Numer Heat Transfer Part A Appl 35(3):291–309CrossRef
Zurück zum Zitat Polyanin AD (1982) Method for solution of some non-linear boundary value problems of a non-stationary diffusion-controlled (thermal) boundary layer. Int J Heat Mass Transf 25(4):471–485CrossRefMATH Polyanin AD (1982) Method for solution of some non-linear boundary value problems of a non-stationary diffusion-controlled (thermal) boundary layer. Int J Heat Mass Transf 25(4):471–485CrossRefMATH
Zurück zum Zitat Polyanin AD (1984) Unsteady-state extraction from a falling droplet with nonlinear dependence of distribution coefficient on concentration. Int J Heat Mass Transf 27(8):1261–1276CrossRefMATH Polyanin AD (1984) Unsteady-state extraction from a falling droplet with nonlinear dependence of distribution coefficient on concentration. Int J Heat Mass Transf 27(8):1261–1276CrossRefMATH
Zurück zum Zitat Rashidnia N, Balasubramaniam R (1991) Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system. Exp Fluids 11(2–3):167–174 Rashidnia N, Balasubramaniam R (1991) Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system. Exp Fluids 11(2–3):167–174
Zurück zum Zitat Subramanian RS, Balasubramaniam R (2001) The motion of bubbles and drops in reduced gravity. Cambridge University Press, CambridgeMATH Subramanian RS, Balasubramaniam R (2001) The motion of bubbles and drops in reduced gravity. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Wang J, Zhao J, Di J, Rauf A, Hao J (2014) Dynamically measuring unstable reaction–diffusion process by using digital holographic interferometry. Opt Lasers Eng 57:1–5CrossRef Wang J, Zhao J, Di J, Rauf A, Hao J (2014) Dynamically measuring unstable reaction–diffusion process by using digital holographic interferometry. Opt Lasers Eng 57:1–5CrossRef
Zurück zum Zitat Wozniak G (1991) On the thermocapillary motion of droplets under reduced gravity. J Colloid Interface Sci 141(1):245–254MathSciNetCrossRef Wozniak G (1991) On the thermocapillary motion of droplets under reduced gravity. J Colloid Interface Sci 141(1):245–254MathSciNetCrossRef
Zurück zum Zitat Wu ZB (2014) Thermocapillary migration of a droplet with a thermal source at large Reynolds and Marangoni numbers. Int J Heat Mass Transf 75:704–709CrossRef Wu ZB (2014) Thermocapillary migration of a droplet with a thermal source at large Reynolds and Marangoni numbers. Int J Heat Mass Transf 75:704–709CrossRef
Zurück zum Zitat Xie JC, Lin H, Han JH, Hu WR (1996) Drop migration of middle Reynolds number in a vertical temperature gradient. Microgr Sci Technol 9(2):95–99 Xie JC, Lin H, Han JH, Hu WR (1996) Drop migration of middle Reynolds number in a vertical temperature gradient. Microgr Sci Technol 9(2):95–99
Zurück zum Zitat Yarin AL, Liu W, Reneker DH (2002) Motion of droplets along thin fibers with temperature gradient. J Appl Phys 91(7):4751–4760CrossRef Yarin AL, Liu W, Reneker DH (2002) Motion of droplets along thin fibers with temperature gradient. J Appl Phys 91(7):4751–4760CrossRef
Zurück zum Zitat Young NO, Goldstein JS, Block MJ (1959) The motion of bubbles in a vertical temperature gradient. J Fluid Mech 6(03):350–356CrossRefMATH Young NO, Goldstein JS, Block MJ (1959) The motion of bubbles in a vertical temperature gradient. J Fluid Mech 6(03):350–356CrossRefMATH
Zurück zum Zitat Zhang L, Subramanian RS, Balasubramaniam R (2001) Motion of a drop in a vertical temperature gradient at small Marangoni number—the critical role of inertia. J Fluid Mech 448:197–211CrossRefMATH Zhang L, Subramanian RS, Balasubramaniam R (2001) Motion of a drop in a vertical temperature gradient at small Marangoni number—the critical role of inertia. J Fluid Mech 448:197–211CrossRefMATH
Zurück zum Zitat Zhang L, Duan L, Kang Q (2014) An experimental research on surface oscillation of buoyant-thermocapillary convection in open cylindrical annuli. Acta Mech Sin 30(5):681–686CrossRef Zhang L, Duan L, Kang Q (2014) An experimental research on surface oscillation of buoyant-thermocapillary convection in open cylindrical annuli. Acta Mech Sin 30(5):681–686CrossRef
Zurück zum Zitat Zhao JF, Zhang L, Li ZD, Qin WT (2011) Topological structure evolvement of flow and temperature fields in deformable drop Marangoni migration in microgravity. Int J Heat Mass Transf 54(21):4655–4663CrossRefMATH Zhao JF, Zhang L, Li ZD, Qin WT (2011) Topological structure evolvement of flow and temperature fields in deformable drop Marangoni migration in microgravity. Int J Heat Mass Transf 54(21):4655–4663CrossRefMATH
Zurück zum Zitat Zhu P, Zhou B, Duan L, Kang Q (2011) Characteristics of surface oscillation in thermocapillary convection. Exp Thermal Fluid Sci 35(7):1444–1450CrossRef Zhu P, Zhou B, Duan L, Kang Q (2011) Characteristics of surface oscillation in thermocapillary convection. Exp Thermal Fluid Sci 35(7):1444–1450CrossRef
Metadaten
Titel
Experimental research on thermocapillary migration of drops by using digital holographic interferometry
verfasst von
Shuoting Zhang
Li Duan
Qi Kang
Publikationsdatum
01.07.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 7/2016
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-016-2193-x

Weitere Artikel der Ausgabe 7/2016

Experiments in Fluids 7/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.