Skip to main content
Erschienen in:

13.11.2022

Experimental Study on Flame Extension and Pattern Analysis of Jet Fire Impinging Wood Plates

verfasst von: Xinxing Chen, Xiaoyang Yu, Yunru Lin, Guangying Li, Jiyun Wang, Ruowen Zong

Erschienen in: Fire Technology | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Jet fires generally leave patterns on the surface of the plate, which can be helpful for fire investigators to find the source and cause of fire incidents. However, the interaction between jet fires and wood plates still lacks research. This paper investigates the flame extension and pattern of jet fire impinging wood plates under strong plume conditions. The flame extension length beneath the plate is intensely studied. Moreover, an attempt is made to relate the fire patterns left by the jet fire impinging on the wood plate with the fire characteristic parameters. The results indicate that the flame extension length under the plates is strongly related to the visible free height, nozzle-plate height, and gas fuel velocity. The radius of the fire pattern is highly correlated with the flame extension length, and a new relationship equation between the radius of the fire pattern and the flame extension length is proposed. The area of the fire pattern is related to three characteristic parameters, the fuel flow rate, nozzle diameter, and nozzle-plate height, and the prediction equation of the fire pattern area is given to collapse all the experimental data well to provide theoretical support for fire investigation work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Swuste P, van Nunen K, Reniers G, Khakzad N (2019) Domino effects in chemical factories and clusters: an historical perspective and discussion. Process Saf Environ Prot 124:18–30CrossRef Swuste P, van Nunen K, Reniers G, Khakzad N (2019) Domino effects in chemical factories and clusters: an historical perspective and discussion. Process Saf Environ Prot 124:18–30CrossRef
2.
Zurück zum Zitat Cumber PS, Spearpoint M (2006) A computational flame length methodology for propane jet fires. Fire Saf J 41:215–228CrossRef Cumber PS, Spearpoint M (2006) A computational flame length methodology for propane jet fires. Fire Saf J 41:215–228CrossRef
3.
Zurück zum Zitat Cumber PS, Onokpe O (2012) Predicting the mean and RMS fields in subsonic hydrogen jet fires. Fire Saf J 49:22–34CrossRef Cumber PS, Onokpe O (2012) Predicting the mean and RMS fields in subsonic hydrogen jet fires. Fire Saf J 49:22–34CrossRef
4.
Zurück zum Zitat Gomez-Mares M, Zarate L, Casal J (2008) Jet fires and the domino effect. Fire Saf J 43:583–588CrossRef Gomez-Mares M, Zarate L, Casal J (2008) Jet fires and the domino effect. Fire Saf J 43:583–588CrossRef
5.
Zurück zum Zitat Mashhadimoslem H, Ghaemi A, Behroozi AH, Palacios A (2020) A New simplified calculation model of geometric thermal features of a vertical propane jet fire based on experimental and computational studies. Process Saf Environ Prot 135:301–314CrossRef Mashhadimoslem H, Ghaemi A, Behroozi AH, Palacios A (2020) A New simplified calculation model of geometric thermal features of a vertical propane jet fire based on experimental and computational studies. Process Saf Environ Prot 135:301–314CrossRef
6.
Zurück zum Zitat Palacios A, Munoz M, Darbra RM, Casal J (2012) Thermal radiation from vertical jet fires. Fire Saf J 51:93–101CrossRef Palacios A, Munoz M, Darbra RM, Casal J (2012) Thermal radiation from vertical jet fires. Fire Saf J 51:93–101CrossRef
7.
Zurück zum Zitat Wang C, Ding L, Wan H, Ji J, Huang Y (2021) Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall. Process Saf Environ Prot 147:1009–1017CrossRef Wang C, Ding L, Wan H, Ji J, Huang Y (2021) Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall. Process Saf Environ Prot 147:1009–1017CrossRef
8.
10.
Zurück zum Zitat Alpert RL (1972) Calculation of response time of ceiling-mounted fire detectors. Fire Technol 8:181–195CrossRef Alpert RL (1972) Calculation of response time of ceiling-mounted fire detectors. Fire Technol 8:181–195CrossRef
11.
Zurück zum Zitat Alpert RL (1987) Convective heat transfer in the impingement region of a buoyant plume. J Heat Transfer 109:120–124CrossRef Alpert RL (1987) Convective heat transfer in the impingement region of a buoyant plume. J Heat Transfer 109:120–124CrossRef
12.
Zurück zum Zitat Alpert RL (1975) Turbulent ceiling-jet induced by large-scale fires. Combust Sci Technol 11:197–213CrossRef Alpert RL (1975) Turbulent ceiling-jet induced by large-scale fires. Combust Sci Technol 11:197–213CrossRef
13.
Zurück zum Zitat Heskestad G, Delichatsios MA (1979) The initial convective flow in fire. Symp Combust 17:1113–1123CrossRef Heskestad G, Delichatsios MA (1979) The initial convective flow in fire. Symp Combust 17:1113–1123CrossRef
14.
Zurück zum Zitat Heskestad G, Hamada T (1993) Ceiling jets of strong fire plumes. Fire Saf J 21:69–82CrossRef Heskestad G, Hamada T (1993) Ceiling jets of strong fire plumes. Fire Saf J 21:69–82CrossRef
15.
Zurück zum Zitat You HZ, Faeth GM (1979) Ceiling heat-transfer during fire plume and fire impingement. Fire Mater 3:140–147CrossRef You HZ, Faeth GM (1979) Ceiling heat-transfer during fire plume and fire impingement. Fire Mater 3:140–147CrossRef
16.
Zurück zum Zitat Wang C, Ji J (2022) Experimental study of fire plume temperature and radiant heat flux of a horizontal jet flame impinging a wall. Fire Saf J 129:103550CrossRef Wang C, Ji J (2022) Experimental study of fire plume temperature and radiant heat flux of a horizontal jet flame impinging a wall. Fire Saf J 129:103550CrossRef
17.
Zurück zum Zitat Schuhler E, Lecordier B, Yon J, Godard G, Coppalle A (2020) Experimental investigation of a low Reynolds number flame jet impinging flat plates. Int J Heat Mass Transfer 156:119856CrossRef Schuhler E, Lecordier B, Yon J, Godard G, Coppalle A (2020) Experimental investigation of a low Reynolds number flame jet impinging flat plates. Int J Heat Mass Transfer 156:119856CrossRef
18.
Zurück zum Zitat Zhao Z, Wong TT, Leung CW (2004) Impinging premixed butane/air circular laminar flame jet: influence of impingement plate on heat transfer characteristics. Int J Heat Mass Transf 47:5021–5031CrossRef Zhao Z, Wong TT, Leung CW (2004) Impinging premixed butane/air circular laminar flame jet: influence of impingement plate on heat transfer characteristics. Int J Heat Mass Transf 47:5021–5031CrossRef
19.
Zurück zum Zitat Wade C, Spearpoint M, Fleischmann C, Baker G, Abu A (2018) Predicting the fire dynamics of exposed timber surfaces in compartments using a two-zone model. Fire Technol 54:893–920CrossRef Wade C, Spearpoint M, Fleischmann C, Baker G, Abu A (2018) Predicting the fire dynamics of exposed timber surfaces in compartments using a two-zone model. Fire Technol 54:893–920CrossRef
20.
Zurück zum Zitat Bénichou N, Sultan MA (2000) Fire resistance performance of lightweight wood-framed assemblies. Fire Technol 36:184–219CrossRef Bénichou N, Sultan MA (2000) Fire resistance performance of lightweight wood-framed assemblies. Fire Technol 36:184–219CrossRef
21.
Zurück zum Zitat Malanga R (1995) Fire endurance of lightweight wood trusses in building construction. Fire Technol 31:44–61CrossRef Malanga R (1995) Fire endurance of lightweight wood trusses in building construction. Fire Technol 31:44–61CrossRef
22.
Zurück zum Zitat Odeen K (1985) Fire resistance of wood structures. Fire Technol 21:34–40CrossRef Odeen K (1985) Fire resistance of wood structures. Fire Technol 21:34–40CrossRef
23.
Zurück zum Zitat Kallada Janardhan R, Hostikka S (2019) Predictive computational fluid dynamics simulation of fire spread on wood cribs. Fire Technol 55:2245–2268CrossRef Kallada Janardhan R, Hostikka S (2019) Predictive computational fluid dynamics simulation of fire spread on wood cribs. Fire Technol 55:2245–2268CrossRef
24.
Zurück zum Zitat Clancy P (2002) A parametric study on the time-to-failure of wood framed walls in fire. Fire Technol 38:243–269CrossRef Clancy P (2002) A parametric study on the time-to-failure of wood framed walls in fire. Fire Technol 38:243–269CrossRef
25.
Zurück zum Zitat Oka Y, Ando M (2013) Temperature and velocity properties of a ceiling jet impinging on an unconfined inclined ceiling. Fire Saf J 55:97–105CrossRef Oka Y, Ando M (2013) Temperature and velocity properties of a ceiling jet impinging on an unconfined inclined ceiling. Fire Saf J 55:97–105CrossRef
26.
Zurück zum Zitat Zhang X, Hu L, Zhu W, Zhang X, Yang L (2014) Flame extension length and temperature profile in thermal impinging flow of buoyant round jet upon a horizontal plate. Appl Therm Eng 73:15–22CrossRef Zhang X, Hu L, Zhu W, Zhang X, Yang L (2014) Flame extension length and temperature profile in thermal impinging flow of buoyant round jet upon a horizontal plate. Appl Therm Eng 73:15–22CrossRef
27.
Zurück zum Zitat Chen L, Du S, Zhang Y, Xie W, Zhang K (2019) Experimental study on the maximum temperature and flame extension length driven by strong plume in a longitudinal ventilated tunnel. Exp Thermal Fluid Sci 101:296–303CrossRef Chen L, Du S, Zhang Y, Xie W, Zhang K (2019) Experimental study on the maximum temperature and flame extension length driven by strong plume in a longitudinal ventilated tunnel. Exp Thermal Fluid Sci 101:296–303CrossRef
28.
Zurück zum Zitat Wang Z, Zhou K, Zhang L, Nie X, Wu Y, Jiang J, Dederichs AS, He L (2021) Flame extension area and temperature profile of horizontal jet fire impinging on a vertical plate. Process Saf Environ Prot 147:547–558CrossRef Wang Z, Zhou K, Zhang L, Nie X, Wu Y, Jiang J, Dederichs AS, He L (2021) Flame extension area and temperature profile of horizontal jet fire impinging on a vertical plate. Process Saf Environ Prot 147:547–558CrossRef
29.
Zurück zum Zitat You HZ (1985) An investigation of fire-plume impingement on a horizontal ceiling. 2—Impingement and ceiling-jet regions. Fire Mater 9:46–56CrossRef You HZ (1985) An investigation of fire-plume impingement on a horizontal ceiling. 2—Impingement and ceiling-jet regions. Fire Mater 9:46–56CrossRef
30.
Zurück zum Zitat Richter F, Rein G (2020) A multiscale model of wood pyrolysis in fire to study the roles of chemistry and heat transfer at the mesoscale. Combust Flame 216:316–325CrossRef Richter F, Rein G (2020) A multiscale model of wood pyrolysis in fire to study the roles of chemistry and heat transfer at the mesoscale. Combust Flame 216:316–325CrossRef
31.
Zurück zum Zitat Abbasi-Atibeh E, Bergthorson JM (2019) Differential diffusion effects in counter-flow premixed hydrogen-enriched methane and propane flames. Proc Combust Inst 37:2399–2406CrossRef Abbasi-Atibeh E, Bergthorson JM (2019) Differential diffusion effects in counter-flow premixed hydrogen-enriched methane and propane flames. Proc Combust Inst 37:2399–2406CrossRef
32.
Zurück zum Zitat Qi X, Zhou S, Gao J, Zhu M, Zhang Z, Zhang D (2021) Counter-current flame propagation in a cylindrical bed of activated carbon saturated with artificial volatile matter in an upward flow of O2/N2 mixture. Proc Combust Inst 38:4251–4259CrossRef Qi X, Zhou S, Gao J, Zhu M, Zhang Z, Zhang D (2021) Counter-current flame propagation in a cylindrical bed of activated carbon saturated with artificial volatile matter in an upward flow of O2/N2 mixture. Proc Combust Inst 38:4251–4259CrossRef
33.
Zurück zum Zitat Ning D, Fan A, Yao H (2017) Effects of fuel composition and strain rate on NO emission of premixed counter-flow H2/CO/air flames. Int J Hydrog Energy 42:10466–10474CrossRef Ning D, Fan A, Yao H (2017) Effects of fuel composition and strain rate on NO emission of premixed counter-flow H2/CO/air flames. Int J Hydrog Energy 42:10466–10474CrossRef
34.
Zurück zum Zitat Safer K, Tabet F, Ouadha A, Safer M, Gökalp I (2014) Simulation of a syngas counter-flow diffusion flame structure and NO emissions in the pressure range 1–10atm. Fuel Process Technol 123:149–158CrossRef Safer K, Tabet F, Ouadha A, Safer M, Gökalp I (2014) Simulation of a syngas counter-flow diffusion flame structure and NO emissions in the pressure range 1–10atm. Fuel Process Technol 123:149–158CrossRef
35.
Zurück zum Zitat Bidabadi M, Hosseinzadeh S, Setareh M, Panahifar P, Sadeghi S (2018) Theoretical study of non-adiabatic counter-flow diffusion flames propagating through a volatile biomass fuel taking into account drying and vaporization processes. Fuel Process Technol 179:184–196CrossRef Bidabadi M, Hosseinzadeh S, Setareh M, Panahifar P, Sadeghi S (2018) Theoretical study of non-adiabatic counter-flow diffusion flames propagating through a volatile biomass fuel taking into account drying and vaporization processes. Fuel Process Technol 179:184–196CrossRef
36.
Zurück zum Zitat Sadeghi S, Bidabadi M (2021) Mathematical study of threshold of thermal-diffusive instability in counter-flow non-premixed biomass-fueled flames considering effective parameters. Comput Math Appl 81:602–617MathSciNetMATHCrossRef Sadeghi S, Bidabadi M (2021) Mathematical study of threshold of thermal-diffusive instability in counter-flow non-premixed biomass-fueled flames considering effective parameters. Comput Math Appl 81:602–617MathSciNetMATHCrossRef
37.
Zurück zum Zitat Zhang G, Zhou X, Zhu G, Yan S (2019) A new accident analysis and investigation model for the complex building fire using numerical reconstruction. Case Stud Thermal Eng 14:100426CrossRef Zhang G, Zhou X, Zhu G, Yan S (2019) A new accident analysis and investigation model for the complex building fire using numerical reconstruction. Case Stud Thermal Eng 14:100426CrossRef
38.
Zurück zum Zitat Otsu N (1979) Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRef Otsu N (1979) Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRef
39.
Zurück zum Zitat Audouin L, Kolb G, Torero JL, Most JM (1995) Average centerline temperatures of a buoyant pool fire obatained by image-processing of video recordings. Fire Saf J 24:167–187CrossRef Audouin L, Kolb G, Torero JL, Most JM (1995) Average centerline temperatures of a buoyant pool fire obatained by image-processing of video recordings. Fire Saf J 24:167–187CrossRef
40.
Zurück zum Zitat Wang Z, Jiang K, Zhao K, Guo P (2021) Macroscopic characteristics and prediction model of horizontal extension length for syngas jet flame under inclined conditions. Int J Hydrog Energy 46:23091–23099CrossRef Wang Z, Jiang K, Zhao K, Guo P (2021) Macroscopic characteristics and prediction model of horizontal extension length for syngas jet flame under inclined conditions. Int J Hydrog Energy 46:23091–23099CrossRef
41.
Zurück zum Zitat Li K, Mousavi M, Hostikka S (2017) Char cracking of medium density fibreboard due to thermal shock effect induced pyrolysis shrinkage. Fire Saf J 91:165–173CrossRef Li K, Mousavi M, Hostikka S (2017) Char cracking of medium density fibreboard due to thermal shock effect induced pyrolysis shrinkage. Fire Saf J 91:165–173CrossRef
42.
Zurück zum Zitat Baroudi D, Ferrantelli A, Li KY, Hostikka S (2017) A thermomechanical explanation for the topology of crack patterns observed on the surface of charred wood and particle fibreboard. Combust Flame 182:206–215CrossRef Baroudi D, Ferrantelli A, Li KY, Hostikka S (2017) A thermomechanical explanation for the topology of crack patterns observed on the surface of charred wood and particle fibreboard. Combust Flame 182:206–215CrossRef
43.
Zurück zum Zitat Bryden KM, Hagge MJ (2003) Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle. Fuel 82:1633–1644CrossRef Bryden KM, Hagge MJ (2003) Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle. Fuel 82:1633–1644CrossRef
44.
Zurück zum Zitat McCaffrey FHB (1988). In: DiNenno PJ (ed) SFPE Fire protection handbook. National Fire Protection Association, Quincy, pp 298–305 McCaffrey FHB (1988). In: DiNenno PJ (ed) SFPE Fire protection handbook. National Fire Protection Association, Quincy, pp 298–305
45.
Zurück zum Zitat Zukoski EE, Kubota T, Cetegen B (1981) Entrainment in fire plumes. Fire Saf J 3:107–121CrossRef Zukoski EE, Kubota T, Cetegen B (1981) Entrainment in fire plumes. Fire Saf J 3:107–121CrossRef
46.
Zurück zum Zitat Heskestad G (1983) Luminous heights of turbulent diffusion flames. Fire Saf J 5:103–108CrossRef Heskestad G (1983) Luminous heights of turbulent diffusion flames. Fire Saf J 5:103–108CrossRef
47.
Zurück zum Zitat Heskestad G (1998) On Q* and the dynamics of turbulent diffusion flames. Fire Saf J 30:215–227CrossRef Heskestad G (1998) On Q* and the dynamics of turbulent diffusion flames. Fire Saf J 30:215–227CrossRef
48.
Zurück zum Zitat da Silva FS, Aquino de Souza NCS, de Moraes MV, Abreu BJ, de Oliveira MF (2022) CmyoSize: an ImageJ macro for automated analysis of cardiomyocyte size in images of routine histology staining. Ann Anat Anatomischer Anzeiger 241:151892–151892CrossRef da Silva FS, Aquino de Souza NCS, de Moraes MV, Abreu BJ, de Oliveira MF (2022) CmyoSize: an ImageJ macro for automated analysis of cardiomyocyte size in images of routine histology staining. Ann Anat Anatomischer Anzeiger 241:151892–151892CrossRef
49.
Zurück zum Zitat Zhou K, Jiang J (2016) Thermal radiation from vertical turbulent jet flame: line source model. J Heat Transfer-Trans Asme 138:042701CrossRef Zhou K, Jiang J (2016) Thermal radiation from vertical turbulent jet flame: line source model. J Heat Transfer-Trans Asme 138:042701CrossRef
50.
Zurück zum Zitat AbAziz NS, MdKasmani R, Samsudin MDM, Ahmad A (2019) Comparative analysis on semi-empirical models of jet fire for radiant heat estimation. Process Integr Optim Sustain 3:285–305CrossRef AbAziz NS, MdKasmani R, Samsudin MDM, Ahmad A (2019) Comparative analysis on semi-empirical models of jet fire for radiant heat estimation. Process Integr Optim Sustain 3:285–305CrossRef
51.
Zurück zum Zitat Bradley D, Gaskell PH, Gu X, Palacios A (2016) Jet flame heights, lift-off distances, and mean flame surface density for extensive ranges of fuels and flow rates. Combust Flame 164:400–409CrossRef Bradley D, Gaskell PH, Gu X, Palacios A (2016) Jet flame heights, lift-off distances, and mean flame surface density for extensive ranges of fuels and flow rates. Combust Flame 164:400–409CrossRef
52.
Zurück zum Zitat Bradley D, Lawes M, Mansour MS (2011) Correlation of turbulent burning velocities of ethanol-air, measured in a fan-stirred bomb up to 12 MPa. Combust Flame 158:123–138CrossRef Bradley D, Lawes M, Mansour MS (2011) Correlation of turbulent burning velocities of ethanol-air, measured in a fan-stirred bomb up to 12 MPa. Combust Flame 158:123–138CrossRef
53.
Zurück zum Zitat Huzayyin AS, Moneib HA, Shehatta MS, Attia AMA (2008) Laminar burning velocity and explosion index of LPG-air and propane-air mixtures. Fuel 87:39–57CrossRef Huzayyin AS, Moneib HA, Shehatta MS, Attia AMA (2008) Laminar burning velocity and explosion index of LPG-air and propane-air mixtures. Fuel 87:39–57CrossRef
54.
Zurück zum Zitat Buckingham E (1914) On physically similar systems, illustrations of the use of dimensional equations. Phys Rev 4:345–376CrossRef Buckingham E (1914) On physically similar systems, illustrations of the use of dimensional equations. Phys Rev 4:345–376CrossRef
Metadaten
Titel
Experimental Study on Flame Extension and Pattern Analysis of Jet Fire Impinging Wood Plates
verfasst von
Xinxing Chen
Xiaoyang Yu
Yunru Lin
Guangying Li
Jiyun Wang
Ruowen Zong
Publikationsdatum
13.11.2022
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 2/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01338-8

Weitere Artikel der Ausgabe 2/2023

Fire Technology 2/2023 Zur Ausgabe