Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 5-6/2021

13.05.2021 | ORIGINAL ARTICLE

Experimental study on the cross-shear roll bending process

verfasst von: Mengrou Lv, Lianhong Zhang, Baiyan He, Feiping Zhao, Senlin Li, Xinrui Wang

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 5-6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Warping is conventionally regarded as a drawback of asymmetrical sheet rolling caused by speed mismatch-induced cross-shear straining. But, in this paper, by utilizing the warping effect, we developed a novel roll bending process, named cross-shear roll bending (CSRB), for the manufacturing of tubular sections. In the process, the metal sheet is rolled and bended under cross-shear straining by mismatched circumferential speeds of two rollers. The process is capable of manufacturing continuously changeable curvature tubular sections with minimized springback and straight ends and also with increased strength through strain hardening. Experiments show that the CSRB process is effective in forming the tubular sections by the following aspects. (1) The curvature radius decreases as the circumferential speed differential rate increases, but it loses its sensitivity to a relatively larger circumferential speed differential rate. (2) The curvature radius evolves along with the change of thickness reduction rate of the sheet in a V-shape manner, which indicates the existence of a minimum curvature radius. (3) The change of radius ratio poses little effect on the curvature radius. Therefore, by exclusively regulating the circumferential speed differential rate and the thickness reduction rate, the curvature of the sections can be controlled.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lange K (1985) Handbook of metal forming. McGraw-Hill, London Lange K (1985) Handbook of metal forming. McGraw-Hill, London
2.
Zurück zum Zitat Altan T, Tekkaya AE (2012) Sheet metal forming: processes and applications. ASM International, OhioCrossRef Altan T, Tekkaya AE (2012) Sheet metal forming: processes and applications. ASM International, OhioCrossRef
3.
Zurück zum Zitat Shin JG, Lee JH, Kim YI, Yim H (2001) Mechanics-based determination of the center roller displacement in three-roll bending for smoothly curved rectangular plates. KSME Int J 15:1655–1663CrossRef Shin JG, Lee JH, Kim YI, Yim H (2001) Mechanics-based determination of the center roller displacement in three-roll bending for smoothly curved rectangular plates. KSME Int J 15:1655–1663CrossRef
4.
Zurück zum Zitat Fu Z, Tian X, Chen W, Hu B, Yao X (2013) Analytical modeling and numerical simulation for three-roll bending forming of sheet metal. Int J Adv Manuf Technol 69:1639–1647CrossRef Fu Z, Tian X, Chen W, Hu B, Yao X (2013) Analytical modeling and numerical simulation for three-roll bending forming of sheet metal. Int J Adv Manuf Technol 69:1639–1647CrossRef
5.
Zurück zum Zitat Kim KW, Kim MK, Cho WY (2019) An analytical model of roll bending steel pipe formed by three rollers. Int J Adv Manuf Technol 104:4039–4048CrossRef Kim KW, Kim MK, Cho WY (2019) An analytical model of roll bending steel pipe formed by three rollers. Int J Adv Manuf Technol 104:4039–4048CrossRef
6.
Zurück zum Zitat Hua M, Baines K, Cole IM (1995) Bending mechanisms, experimental techniques and preliminary tests for the continuous four-roll plate bending process. J Mater Process Technol 48(1):159–172CrossRef Hua M, Baines K, Cole IM (1995) Bending mechanisms, experimental techniques and preliminary tests for the continuous four-roll plate bending process. J Mater Process Technol 48(1):159–172CrossRef
7.
Zurück zum Zitat Tran QH, Champliaud H, Feng Z, Dao TM (2014) Analysis of the asymmetrical roll bending process through dynamic FE simulations and experimental study. Int J Adv Manuf Technol 75:1233–1244CrossRef Tran QH, Champliaud H, Feng Z, Dao TM (2014) Analysis of the asymmetrical roll bending process through dynamic FE simulations and experimental study. Int J Adv Manuf Technol 75:1233–1244CrossRef
8.
Zurück zum Zitat Salem J, Champliaud H, Feng Z, Dao TM (2016) Experimental analysis of an asymmetrical three-roll bending process. Int J Adv Manuf Technol 83:1823–1833CrossRef Salem J, Champliaud H, Feng Z, Dao TM (2016) Experimental analysis of an asymmetrical three-roll bending process. Int J Adv Manuf Technol 83:1823–1833CrossRef
9.
Zurück zum Zitat Hua M, Sansome DH, Baines K (1995) Mathematical modeling of the internal bending moment at the top roll contact in multi-pass four-roll thin-plate bending. J Mater Process Technol 52(2–4):425–459CrossRef Hua M, Sansome DH, Baines K (1995) Mathematical modeling of the internal bending moment at the top roll contact in multi-pass four-roll thin-plate bending. J Mater Process Technol 52(2–4):425–459CrossRef
10.
Zurück zum Zitat Gu X, Franzke M, Bambach M, Hirt G (2010) Experimental and numerical investigation of grid sheet bending behavior in four-roll bending. CIRP Ann 59(1):303–306CrossRef Gu X, Franzke M, Bambach M, Hirt G (2010) Experimental and numerical investigation of grid sheet bending behavior in four-roll bending. CIRP Ann 59(1):303–306CrossRef
11.
Zurück zum Zitat Yu G, Zhao J, Xu C (2019) Development of a symmetrical four-roller bending process. Int J Adv Manuf Technol 104:4049–4061CrossRef Yu G, Zhao J, Xu C (2019) Development of a symmetrical four-roller bending process. Int J Adv Manuf Technol 104:4049–4061CrossRef
12.
Zurück zum Zitat Zakirov IM, Martyanov AG, Ruzicka K (1997) Rotary shaping with the use of elastic mediums. Vydavateľstvo STU, Bratislava Zakirov IM, Martyanov AG, Ruzicka K (1997) Rotary shaping with the use of elastic mediums. Vydavateľstvo STU, Bratislava
13.
Zurück zum Zitat Lu S, Jin X, Bu J (2008) Experimental research and FEM analysis of the two-axle rotary shaping with elastic medium. In: Yan XT, Jiang C, Eynard B (eds) Advanced design and manufacture to gain a competitive edge. Springer, London Lu S, Jin X, Bu J (2008) Experimental research and FEM analysis of the two-axle rotary shaping with elastic medium. In: Yan XT, Jiang C, Eynard B (eds) Advanced design and manufacture to gain a competitive edge. Springer, London
14.
Zurück zum Zitat Zhang T, Sha H, Lu S, Du C, Chen P (2019) Study on flexible two-axis roll-bending process for component with non-circular section. J Mech Sci Technol 33:4421–4429CrossRef Zhang T, Sha H, Lu S, Du C, Chen P (2019) Study on flexible two-axis roll-bending process for component with non-circular section. J Mech Sci Technol 33:4421–4429CrossRef
16.
Zurück zum Zitat Sachs G, Klinger LJ (1947) The flow of metals through tools of circular contour. J Appl Mech 14(2):88–98CrossRef Sachs G, Klinger LJ (1947) The flow of metals through tools of circular contour. J Appl Mech 14(2):88–98CrossRef
17.
Zurück zum Zitat Holbrook RL, Zorowski CF (1966) Effects of nonsymmetry in strip rolling on single-roll drive mills. J Eng Ind 88(4):401–408CrossRef Holbrook RL, Zorowski CF (1966) Effects of nonsymmetry in strip rolling on single-roll drive mills. J Eng Ind 88(4):401–408CrossRef
18.
Zurück zum Zitat Johnson W, Needham G (1965) An experimental study of asymmetrical rolling. Proc Inst Mech Eng 180(9):270–281 Johnson W, Needham G (1965) An experimental study of asymmetrical rolling. Proc Inst Mech Eng 180(9):270–281
19.
Zurück zum Zitat Johnson W, Needham G (1966) Further experiments in asymmetrical rolling. Int J Mech Sci 8(6):443–455CrossRef Johnson W, Needham G (1966) Further experiments in asymmetrical rolling. Int J Mech Sci 8(6):443–455CrossRef
20.
Zurück zum Zitat Dewhurst P, Collins IF, Johnson W (1974) A theoretical and experimental investigation into asymmetrical hot rolling. Int J Mech Sci 16(6):389–397CrossRef Dewhurst P, Collins IF, Johnson W (1974) A theoretical and experimental investigation into asymmetrical hot rolling. Int J Mech Sci 16(6):389–397CrossRef
21.
Zurück zum Zitat Hwang YM, Tzou GY (1997) Analytical and experimental study on asymmetrical sheet rolling. Int J Mech Sci 39(3):289–303CrossRef Hwang YM, Tzou GY (1997) Analytical and experimental study on asymmetrical sheet rolling. Int J Mech Sci 39(3):289–303CrossRef
22.
Zurück zum Zitat Salimi M, Kadkhodaei M (2004) Slab analysis of asymmetrical sheet rolling. J Mater Process Technol 150(3):215–222CrossRef Salimi M, Kadkhodaei M (2004) Slab analysis of asymmetrical sheet rolling. J Mater Process Technol 150(3):215–222CrossRef
23.
Zurück zum Zitat Tian Y, Guo YH, Wang ZD, Wang GD (2009) Analysis of rolling pressure in asymmetrical rolling process by slab method. J Iron Steel Res Int 16:22–26CrossRef Tian Y, Guo YH, Wang ZD, Wang GD (2009) Analysis of rolling pressure in asymmetrical rolling process by slab method. J Iron Steel Res Int 16:22–26CrossRef
24.
Zurück zum Zitat Qwamizadeh M, Kadkhodaei M, Salimi M (2012) Asymmetrical sheet rolling analysis and evaluation of developed curvature. Int J Adv Manuf Technol 61(1–4):227–235CrossRef Qwamizadeh M, Kadkhodaei M, Salimi M (2012) Asymmetrical sheet rolling analysis and evaluation of developed curvature. Int J Adv Manuf Technol 61(1–4):227–235CrossRef
25.
Zurück zum Zitat Zhang SH, Zhao DW, Gao CR, Wang GD (2012) Analysis of asymmetrical sheet rolling by slab method. Int J Mech Sci 65(1):168–176CrossRef Zhang SH, Zhao DW, Gao CR, Wang GD (2012) Analysis of asymmetrical sheet rolling by slab method. Int J Mech Sci 65(1):168–176CrossRef
26.
Zurück zum Zitat Wang J, Liu X, Guo W (2018) Analysis of mechanical parameters for asymmetrical strip rolling by slab method. Int J Adv Manuf Technol 98:2297–2309CrossRef Wang J, Liu X, Guo W (2018) Analysis of mechanical parameters for asymmetrical strip rolling by slab method. Int J Adv Manuf Technol 98:2297–2309CrossRef
27.
Zurück zum Zitat Gao H, Ramalingam SC, Barber GC, Chen G (2002) Analysis of asymmetrical cold rolling with varying coefficients of friction. J Mater Process Technol 124:178–182CrossRef Gao H, Ramalingam SC, Barber GC, Chen G (2002) Analysis of asymmetrical cold rolling with varying coefficients of friction. J Mater Process Technol 124:178–182CrossRef
28.
Zurück zum Zitat Farhatnia F, Salimi M, Movahhedy MR (2006) Elasto-plastic finite element simulation of asymmetrical plate rolling using an ALE approach. J Mater Process Technol 177(1-3):525–529CrossRef Farhatnia F, Salimi M, Movahhedy MR (2006) Elasto-plastic finite element simulation of asymmetrical plate rolling using an ALE approach. J Mater Process Technol 177(1-3):525–529CrossRef
29.
Zurück zum Zitat Akbari Mousavi SAA, Ebrahimi SM, Madoliat R (2007) Three dimensional numerical analyses of asymmetric rolling. J Mater Process Technol 187–188:725–729CrossRef Akbari Mousavi SAA, Ebrahimi SM, Madoliat R (2007) Three dimensional numerical analyses of asymmetric rolling. J Mater Process Technol 187–188:725–729CrossRef
30.
Zurück zum Zitat Hao L, Di HS, Gong DY (2013) Analysis of sheet curvature in asymmetrical cold rolling. J Iron Steel Res Int 20:34–37CrossRef Hao L, Di HS, Gong DY (2013) Analysis of sheet curvature in asymmetrical cold rolling. J Iron Steel Res Int 20:34–37CrossRef
31.
Zurück zum Zitat Tang DL, Liu XH, Li XY, Peng LG (2013) Permissible minimum thickness in asymmetrical cold rolling. J Iron Steel Res Int 20:21–26CrossRef Tang DL, Liu XH, Li XY, Peng LG (2013) Permissible minimum thickness in asymmetrical cold rolling. J Iron Steel Res Int 20:21–26CrossRef
32.
Zurück zum Zitat Qwamizadeh M, Kadkhodaei M, Salimi M (2014) Asymmetrical rolling analysis of bonded two-layer sheets and evaluation of outgoing curvature. Int J Adv Manuf Technol 73:521–533CrossRef Qwamizadeh M, Kadkhodaei M, Salimi M (2014) Asymmetrical rolling analysis of bonded two-layer sheets and evaluation of outgoing curvature. Int J Adv Manuf Technol 73:521–533CrossRef
33.
Zurück zum Zitat Sui FL, Wang X, Zhao J et al (2015) Analysis on shear deformation for high manganese austenite steel during hot asymmetrical rolling process using finite element method. J Iron Steel Res Int 22:990–995CrossRef Sui FL, Wang X, Zhao J et al (2015) Analysis on shear deformation for high manganese austenite steel during hot asymmetrical rolling process using finite element method. J Iron Steel Res Int 22:990–995CrossRef
34.
Zurück zum Zitat Sun X, Liu X, Wang J, Qi J (2020) Analysis of asymmetrical rolling of strip considering percentages of three regions in deformation zone. Int J Adv Manuf Technol 110:763–775CrossRef Sun X, Liu X, Wang J, Qi J (2020) Analysis of asymmetrical rolling of strip considering percentages of three regions in deformation zone. Int J Adv Manuf Technol 110:763–775CrossRef
35.
Zurück zum Zitat Sun X, Liu X, Wang J, Qi J (2020) Analysis of asymmetrical rolling of strip considering two deformation region types. Int J Adv Manuf Technol 110:2767–2785CrossRef Sun X, Liu X, Wang J, Qi J (2020) Analysis of asymmetrical rolling of strip considering two deformation region types. Int J Adv Manuf Technol 110:2767–2785CrossRef
36.
Zurück zum Zitat Kang SB, Min BK, Kim HW, Wilkinson DS, Kang J (2005) Effect of asymmetric rolling on the texture and mechanical properties of AA6111-aluminum sheet. Metall Mater Trans A 36:3141–3149CrossRef Kang SB, Min BK, Kim HW, Wilkinson DS, Kang J (2005) Effect of asymmetric rolling on the texture and mechanical properties of AA6111-aluminum sheet. Metall Mater Trans A 36:3141–3149CrossRef
37.
Zurück zum Zitat Simões FJP, de Sousa RJA, Grácio JJA, Barlat F, Whan Yoon J (2009) Effect of asymmetrical rolling and annealing the mechanical response of an 1050-O sheet. Int J Mater Form 2:891–894CrossRef Simões FJP, de Sousa RJA, Grácio JJA, Barlat F, Whan Yoon J (2009) Effect of asymmetrical rolling and annealing the mechanical response of an 1050-O sheet. Int J Mater Form 2:891–894CrossRef
38.
Zurück zum Zitat Li X, Zu G, Deng Q (2011) An investigation of deformation behavior of bimetal clad sheets by asymmetrical rolling at room temperature. In: Lindsay SJ (ed) Light Metals 2011. Springer, Cham Li X, Zu G, Deng Q (2011) An investigation of deformation behavior of bimetal clad sheets by asymmetrical rolling at room temperature. In: Lindsay SJ (ed) Light Metals 2011. Springer, Cham
Metadaten
Titel
Experimental study on the cross-shear roll bending process
verfasst von
Mengrou Lv
Lianhong Zhang
Baiyan He
Feiping Zhao
Senlin Li
Xinrui Wang
Publikationsdatum
13.05.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 5-6/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-07255-4

Weitere Artikel der Ausgabe 5-6/2021

The International Journal of Advanced Manufacturing Technology 5-6/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.