Skip to main content
Erschienen in: Microsystem Technologies 8/2017

06.08.2016 | Technical Paper

Experimental study on the drag reduction effect of a rotating superhydrophobic surface in micro gap flow field

verfasst von: Chunze Wang, Fei Tang, Pengfei Hao, Qi Li, Xiaohao Wang

Erschienen in: Microsystem Technologies | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the drag reduction effect of a rotating disk with a superhydrophobic surface in micro gap flow field has been experimentally researched. The velocity distributions, driven by disks with a smooth and superhydrophobic surface, were measured using a rotating flow measurement system, based on micro particle image velocimetry in similar experimental conditions. The friction torques of different Reynolds numbers were calculated by integrating the shear stress in the radial direction to verify the drag reduction effect. The results showed a laminar regime with a merged boundary layer appearing in the axial gap and the tangential velocity was approximately linear along the z-axis at different radiuses. The maximum drag reduction rate reached 13.9 % for the existence of an air gap in the micro–nano structures of the superhydrophobic surface. This result provides a solution for solving the problem of solid–liquid friction when a solid object moves underwater in a micro system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Brennan JC, Geraldi NR, Morris RH, Fairhurst DJ, McHale G, Newton MI (2015) Flexible conformable hydrophobized surfaces for turbulent flow drag reduction Scientific Reports 5:10267. doi:10.1038/srep10267 Brennan JC, Geraldi NR, Morris RH, Fairhurst DJ, McHale G, Newton MI (2015) Flexible conformable hydrophobized surfaces for turbulent flow drag reduction Scientific Reports 5:10267. doi:10.​1038/​srep10267
Zurück zum Zitat Cheng M, Song M, Dong H, Shi F (2015) Surface adhesive forces: a metric describing the drag-reducing effects of superhydrophobic coatings. Small 11:1665–1671CrossRef Cheng M, Song M, Dong H, Shi F (2015) Surface adhesive forces: a metric describing the drag-reducing effects of superhydrophobic coatings. Small 11:1665–1671CrossRef
Zurück zum Zitat Choi C-H, Ulmanella U, Kim J, Ho C-M, Kim C-J (2006) Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys Fluids 18:087105. doi:10.1063/1.2337669 CrossRef Choi C-H, Ulmanella U, Kim J, Ho C-M, Kim C-J (2006) Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys Fluids 18:087105. doi:10.​1063/​1.​2337669 CrossRef
Zurück zum Zitat Dubov AL, Schmieschek S, Asmolov ES, Harting J, Vinogradova OI (2014) Lattice-Boltzmann simulations of the drag force on a sphere approaching a superhydrophobic striped plane. J Chem Phys 140:034707. doi:10.1063/1.4861896 CrossRef Dubov AL, Schmieschek S, Asmolov ES, Harting J, Vinogradova OI (2014) Lattice-Boltzmann simulations of the drag force on a sphere approaching a superhydrophobic striped plane. J Chem Phys 140:034707. doi:10.​1063/​1.​4861896 CrossRef
Zurück zum Zitat Gogolides E, Ellinas K, Tserepi A (2015) Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectron Eng 132:135–155. doi:10.1016/j.mee.2014.10.002 CrossRef Gogolides E, Ellinas K, Tserepi A (2015) Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectron Eng 132:135–155. doi:10.​1016/​j.​mee.​2014.​10.​002 CrossRef
Zurück zum Zitat Guan W-S, Huang H-X, Chen A-F (2015) Tuning 3D topography on biomimetic surface for efficient self-cleaning and microfluidic manipulation. J Micromech Microeng 25:035001CrossRef Guan W-S, Huang H-X, Chen A-F (2015) Tuning 3D topography on biomimetic surface for efficient self-cleaning and microfluidic manipulation. J Micromech Microeng 25:035001CrossRef
Zurück zum Zitat Hara S, Watanabe T, Furukawa H, Endo S (2015) Effects of a radial gap on vortical flow structures around a rotating disk in a cylindrical casing. J Vis. doi:10.1007/s12650-015-0292-z Hara S, Watanabe T, Furukawa H, Endo S (2015) Effects of a radial gap on vortical flow structures around a rotating disk in a cylindrical casing. J Vis. doi:10.​1007/​s12650-015-0292-z
Zurück zum Zitat Kähler CJ, Scholz U, Ortmanns J (2006) Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp Fluids 41:327–341. doi:10.1007/s00348-006-0167-0 CrossRef Kähler CJ, Scholz U, Ortmanns J (2006) Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp Fluids 41:327–341. doi:10.​1007/​s00348-006-0167-0 CrossRef
Zurück zum Zitat Kwon BH, Kim HH, Jeon HJ, Kim MC, Lee I, Chun S, Go JS (2014) Experimental study on the reduction of skin frictional drag in pipe flow by using convex air bubbles. Exp Fluids. doi:10.1007/s00348-014-1722-8 Kwon BH, Kim HH, Jeon HJ, Kim MC, Lee I, Chun S, Go JS (2014) Experimental study on the reduction of skin frictional drag in pipe flow by using convex air bubbles. Exp Fluids. doi:10.​1007/​s00348-014-1722-8
Zurück zum Zitat Lee M, Yim C, Jeon S (2015) Highly stable superhydrophobic surfaces under flow conditions. Appl Phys Lett 106:011605CrossRef Lee M, Yim C, Jeon S (2015) Highly stable superhydrophobic surfaces under flow conditions. Appl Phys Lett 106:011605CrossRef
Zurück zum Zitat Li S, Jin M, Yu C, Liao M (2013) Wetting behavior of superhydrophobic surface in the liquid influenced by the existing of air layer. Colloids Surf A 430:46–50CrossRef Li S, Jin M, Yu C, Liao M (2013) Wetting behavior of superhydrophobic surface in the liquid influenced by the existing of air layer. Colloids Surf A 430:46–50CrossRef
Zurück zum Zitat Mayser MJ, Bohn HF, Reker M, Barthlott W (2014) Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces. Beilstein J Nanotechnol 5:812–821CrossRef Mayser MJ, Bohn HF, Reker M, Barthlott W (2014) Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces. Beilstein J Nanotechnol 5:812–821CrossRef
Zurück zum Zitat Ming Z, Jian L, Chunxia W, Xiaokang Z, Lan C (2011) Fluid drag reduction on superhydrophobic surfaces coated with carbon nanotube forests (CNTs). Soft Matter 7:4391. doi:10.1039/c0sm01426e CrossRef Ming Z, Jian L, Chunxia W, Xiaokang Z, Lan C (2011) Fluid drag reduction on superhydrophobic surfaces coated with carbon nanotube forests (CNTs). Soft Matter 7:4391. doi:10.​1039/​c0sm01426e CrossRef
Zurück zum Zitat Mogi K, Fujii T (2010) A microfluidic device for stepwise size-based capturing of suspended particles. J Micromech Microeng 20:055015CrossRef Mogi K, Fujii T (2010) A microfluidic device for stepwise size-based capturing of suspended particles. J Micromech Microeng 20:055015CrossRef
Zurück zum Zitat Navier C (1823) Mémoire sur les lois du mouvement des fluides. Mémoires de l’Académie Royale des Sciences de l’Institut de France 6:389–440 Navier C (1823) Mémoire sur les lois du mouvement des fluides. Mémoires de l’Académie Royale des Sciences de l’Institut de France 6:389–440
Zurück zum Zitat Park H, Park H, Kim J (2013) A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Phys Fluids 25:110815. doi:10.1063/1.4819144 CrossRef Park H, Park H, Kim J (2013) A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Phys Fluids 25:110815. doi:10.​1063/​1.​4819144 CrossRef
Zurück zum Zitat Shi YP, Tang F, Wang XH (2013) Simulation research on micro-cavity flow field characteristics of liquid floating rotor gyro. In: Key engineering materials. Trans Tech Publ, pp 490–495 Shi YP, Tang F, Wang XH (2013) Simulation research on micro-cavity flow field characteristics of liquid floating rotor gyro. In: Key engineering materials. Trans Tech Publ, pp 490–495
Zurück zum Zitat Srinivasan S, Kleingartner JA, Gilbert JB, Cohen RE, Milne AJB, McKinley GH (2015) Sustainable drag reduction in turbulent Taylor-Couette flows by depositing sprayable superhydrophobic surfaces. Phys Rev Lett. doi:10.1103/PhysRevLett.114.014501 Srinivasan S, Kleingartner JA, Gilbert JB, Cohen RE, Milne AJB, McKinley GH (2015) Sustainable drag reduction in turbulent Taylor-Couette flows by depositing sprayable superhydrophobic surfaces. Phys Rev Lett. doi:10.​1103/​PhysRevLett.​114.​014501
Zurück zum Zitat Yu C, Qian X, Chen Y, Yu Q, Ni K, Wang X (2015) Three-dimensional electro-sonic flow focusing ionization microfluidic chip for mass spectrometry. Micromachines 6:1890–1902CrossRef Yu C, Qian X, Chen Y, Yu Q, Ni K, Wang X (2015) Three-dimensional electro-sonic flow focusing ionization microfluidic chip for mass spectrometry. Micromachines 6:1890–1902CrossRef
Zurück zum Zitat Zhang J, Tian H, Yao Z, Hao P, Jiang N (2015a) Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow. Exp Fluids. doi:10.1007/s00348-015-2047-y Zhang J, Tian H, Yao Z, Hao P, Jiang N (2015a) Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow. Exp Fluids. doi:10.​1007/​s00348-015-2047-y
Zurück zum Zitat Zhang S, Ouyang X, Li J, Gao S, Han S, Liu L, Wei H (2015b) Underwater drag-reducing effect of superhydrophobic submarine model. Langmuir ACS J Surf Colloids 31:587–593. doi:10.1021/la504451k CrossRef Zhang S, Ouyang X, Li J, Gao S, Han S, Liu L, Wei H (2015b) Underwater drag-reducing effect of superhydrophobic submarine model. Langmuir ACS J Surf Colloids 31:587–593. doi:10.​1021/​la504451k CrossRef
Metadaten
Titel
Experimental study on the drag reduction effect of a rotating superhydrophobic surface in micro gap flow field
verfasst von
Chunze Wang
Fei Tang
Pengfei Hao
Qi Li
Xiaohao Wang
Publikationsdatum
06.08.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 8/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3097-7

Weitere Artikel der Ausgabe 8/2017

Microsystem Technologies 8/2017 Zur Ausgabe

Neuer Inhalt