Skip to main content

2025 | OriginalPaper | Buchkapitel

Explainable Artificial Intelligence (XAI) in Critical Decision-Making Processes

verfasst von : Swati Arya, Shruti Aggarwal, Nupur Soni, Neerav Nishant, Syed Anas Ansar

Erschienen in: Innovative Computing and Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Methodological advancement based on Artificial Intelligence (AI) has developed dramatically during the past few years in various sectors. The majority of these models are intrinsically complex and lack explanations of the decision-making process, hence the moniker “Black-Box”. Explainable AI (XAI) has emerged with significant implications for addressing the opacity of conventional black-box models. With a focus on the inscrutable AI, this study investigates the terrain of critical decision-making procedures. Commencing with a little background context, an analysis of existing techniques like Local Interpretable Model-Agnostic Explanations (LIMEs) and Shapley Additive exPlanations (SHAP) is presented. Concrete applications stem from insightful case studies that show XAI's revolutionary benefits in a variety of real-world settings. Moreover, to accentuate the delicate balance between privacy concerns and transparency, the ethical repercussions of employing XAI are examined. This work concludes with a discussion on how crucial it is for XAI to strengthen the foundation of accountability and trust in the vital decision-making process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rai, A. (2020). Explainable AI: From black box to glass box. Journal of the Academy of Marketing Science, 48, 137–141.CrossRef Rai, A. (2020). Explainable AI: From black box to glass box. Journal of the Academy of Marketing Science, 48, 137–141.CrossRef
2.
Zurück zum Zitat Chen, T. C. T. (2023). Applications of XAI for decision making in the manufacturing domain. In Explainable artificial intelligence (XAI) in manufacturing: Methodology, tools, and applications (51–81). Springer International Publishing. Chen, T. C. T. (2023). Applications of XAI for decision making in the manufacturing domain. In Explainable artificial intelligence (XAI) in manufacturing: Methodology, tools, and applications (51–81). Springer International Publishing.
3.
Zurück zum Zitat Ansar, S. A., Arya, S., Aggrawal, S., Yadav, J., & Pathak, P. C. (2022). Bitcoin-blockchain technology: Security perspective. In 2022 3rd international conference on intelligent engineering and management (ICIEM) (291–296). IEEE. Ansar, S. A., Arya, S., Aggrawal, S., Yadav, J., & Pathak, P. C. (2022). Bitcoin-blockchain technology: Security perspective. In 2022 3rd international conference on intelligent engineering and management (ICIEM) (291–296). IEEE.
4.
Zurück zum Zitat Ansar, S. A., Arya, S., Dwivedi, S. K., Soni, N., Yadav, A., & Pathak, P. C. (2023). Data mining: An incipient approach to world security. In Computer vision and robotics: Proceedings of CVR 2022 (541–550). Springer Nature Singapore. Ansar, S. A., Arya, S., Dwivedi, S. K., Soni, N., Yadav, A., & Pathak, P. C. (2023). Data mining: An incipient approach to world security. In Computer vision and robotics: Proceedings of CVR 2022 (541–550). Springer Nature Singapore.
5.
Zurück zum Zitat Rudin, C., & Radin, J. (2019). Why are we using black box models in AI when we don’t need to? A lesson from an explainable AI competition. Harvard Data Science Review, 1(2), 1–9.CrossRef Rudin, C., & Radin, J. (2019). Why are we using black box models in AI when we don’t need to? A lesson from an explainable AI competition. Harvard Data Science Review, 1(2), 1–9.CrossRef
6.
Zurück zum Zitat Yadav, J., Arya, S., Kushwaha, A., Ansar, S. A., & Khan, R. A. (2023). Reinforcing Li-ion batteries with electrochemical impedance spectroscopy. Materials Today: Proceedings. Yadav, J., Arya, S., Kushwaha, A., Ansar, S. A., & Khan, R. A. (2023). Reinforcing Li-ion batteries with electrochemical impedance spectroscopy. Materials Today: Proceedings.
7.
Zurück zum Zitat Ansar, S. A., Aggarwal, S., Arya, S., Haq, M. A., Mittal, V., & Gared, F. (2023). An intuitionistic approach for the predictability of anti-angiogenic inhibitors in cancer diagnosis. Scientific Reports, 13(1), 7051.CrossRef Ansar, S. A., Aggarwal, S., Arya, S., Haq, M. A., Mittal, V., & Gared, F. (2023). An intuitionistic approach for the predictability of anti-angiogenic inhibitors in cancer diagnosis. Scientific Reports, 13(1), 7051.CrossRef
8.
Zurück zum Zitat Ehsan, U., Passi, S., Liao, Q. V., Chan, L., Lee, I., Muller, M., & Riedl, M. O. (2021). The who in explainable AI: How AI background shapes perceptions of AI explanations. arXiv:2107.13509 Ehsan, U., Passi, S., Liao, Q. V., Chan, L., Lee, I., Muller, M., & Riedl, M. O. (2021). The who in explainable AI: How AI background shapes perceptions of AI explanations. arXiv:​2107.​13509
9.
Zurück zum Zitat Brożek, B., Furman, M., Jakubiec, M., & Kucharzyk, B. (2023). The black box problem revisited. Real and imaginary challenges for automated legal decision making. Artificial Intelligence and Law, 1–14. Brożek, B., Furman, M., Jakubiec, M., & Kucharzyk, B. (2023). The black box problem revisited. Real and imaginary challenges for automated legal decision making. Artificial Intelligence and Law, 1–14.
10.
Zurück zum Zitat Bhattacharya, A. (2022). Applied machine learning explainability techniques: Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more. Packt Publishing Ltd. Bhattacharya, A. (2022). Applied machine learning explainability techniques: Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more. Packt Publishing Ltd.
11.
Zurück zum Zitat Darias, J. M., Díaz-Agudo, B., & Recio-Garcia, J. A. (2021). A systematic review on model-agnostic XAI libraries. In ICCBR workshops (28–39). Darias, J. M., Díaz-Agudo, B., & Recio-Garcia, J. A. (2021). A systematic review on model-agnostic XAI libraries. In ICCBR workshops (28–39).
12.
Zurück zum Zitat Roshan, K., & Zafar, A. (2021). Utilizing XAI technique to improve autoencoder based model for computer network anomaly detection with Shapley additive explanation (SHAP). arXiv:2112.08442 Roshan, K., & Zafar, A. (2021). Utilizing XAI technique to improve autoencoder based model for computer network anomaly detection with Shapley additive explanation (SHAP). arXiv:​2112.​08442
13.
Zurück zum Zitat Srinivasu, P. N., Sandhya, N., Jhaveri, R. H., & Raut, R. (2022). From blackbox to explainable AI in healthcare: Existing tools and case studies. Mobile Information Systems, 2022, 1–20. Srinivasu, P. N., Sandhya, N., Jhaveri, R. H., & Raut, R. (2022). From blackbox to explainable AI in healthcare: Existing tools and case studies. Mobile Information Systems, 2022, 1–20.
14.
Zurück zum Zitat McDermid, J. A., Jia, Y., Porter, Z., & Habli, I. (2021). Artificial intelligence explainability: The technical and ethical dimensions. Philosophical Transactions of the Royal Society A, 379(2207), 20200363.CrossRef McDermid, J. A., Jia, Y., Porter, Z., & Habli, I. (2021). Artificial intelligence explainability: The technical and ethical dimensions. Philosophical Transactions of the Royal Society A, 379(2207), 20200363.CrossRef
Metadaten
Titel
Explainable Artificial Intelligence (XAI) in Critical Decision-Making Processes
verfasst von
Swati Arya
Shruti Aggarwal
Nupur Soni
Neerav Nishant
Syed Anas Ansar
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_32