Skip to main content
Erschienen in:

2024 | OriginalPaper | Buchkapitel

Exploiting Medical-Expert Knowledge Via a Novel Memetic Algorithm for the Inference of Gene Regulatory Networks

verfasst von : Adrián Segura-Ortiz, José García-Nieto, José F. Aldana-Montes

Erschienen in: Computational Science – ICCS 2024

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Das Kapitel geht auf die Herausforderungen ein, die mit der Schlussfolgerung von Gen-Regulierungsnetzwerken (Gen Regulation Networks, GRNs) verbunden sind, und stellt einen neuartigen memetischen Algorithmus vor, der medizinisches Expertenwissen einbezieht, um die Genauigkeit zu verbessern. Indem die vorgeschlagene Methode die Komplexität biologischer Systeme und die Beschränkungen empirischer Daten berücksichtigt, baut sie auf dem GENECI-Rahmenwerk auf und integriert eine zusätzliche lokale Suchphase, um die Nutzung bekannter genetischer Interaktionen zu maximieren. Experimente mit DREAM-Herausforderungen und dem IRMA-Hefe-Netzwerk zeigen statistisch signifikante Verbesserungen, was die Fähigkeit des Algorithmus unterstreicht, minimales Vorwissen effektiv zu nutzen. Diese Arbeit ist besonders relevant für das Verständnis komplexer biologischer Prozesse und Krankheiten auf molekularer Ebene.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Altay, G., Emmert-Streib, F.: Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol. 4(1), 1–13 (2010)CrossRef Altay, G., Emmert-Streib, F.: Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol. 4(1), 1–13 (2010)CrossRef
2.
Zurück zum Zitat Aluru, M., Shrivastava, H., Chockalingam, S.P., Shivakumar, S., Aluru, S.: Engrain: a supervised ensemble learning method for recovery of large-scale gene regulatory networks. Bioinformatics 38(5), 1312–1319 (2022)CrossRef Aluru, M., Shrivastava, H., Chockalingam, S.P., Shivakumar, S., Aluru, S.: Engrain: a supervised ensemble learning method for recovery of large-scale gene regulatory networks. Bioinformatics 38(5), 1312–1319 (2022)CrossRef
3.
Zurück zum Zitat Baliarsingh, S.K., Muhammad, K., Bakshi, S.: Sara: a memetic algorithm for high-dimensional biomedical data. Appl. Soft Comput. 101, 107009 (2021)CrossRef Baliarsingh, S.K., Muhammad, K., Bakshi, S.: Sara: a memetic algorithm for high-dimensional biomedical data. Appl. Soft Comput. 101, 107009 (2021)CrossRef
4.
Zurück zum Zitat Cantone, I., Marucci, L., et al.: A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137(1), 172–181 (2009)CrossRef Cantone, I., Marucci, L., et al.: A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137(1), 172–181 (2009)CrossRef
5.
Zurück zum Zitat Correa, L., Borguesan, B., Farfan, C., Inostroza-Ponta, M., Dorn, M.: A memetic algorithm for 3D protein structure prediction problem. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(3), 690–704 (2016)CrossRef Correa, L., Borguesan, B., Farfan, C., Inostroza-Ponta, M., Dorn, M.: A memetic algorithm for 3D protein structure prediction problem. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(3), 690–704 (2016)CrossRef
6.
Zurück zum Zitat Escorcia-Rodríguez, J.M., Gaytan-Nuñez, E., et al.: Improving gene regulatory network inference and assessment: the importance of using network structure. Front. Genet. 14, 1143382 (2023)CrossRef Escorcia-Rodríguez, J.M., Gaytan-Nuñez, E., et al.: Improving gene regulatory network inference and assessment: the importance of using network structure. Front. Genet. 14, 1143382 (2023)CrossRef
7.
Zurück zum Zitat Faith, J.J., Hayete, B., Thaden, J.T., et al.: Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5(1), e8 (2007)CrossRef Faith, J.J., Hayete, B., Thaden, J.T., et al.: Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5(1), e8 (2007)CrossRef
8.
Zurück zum Zitat Finkle, J.D., Wu, J., Bagheri, N.: Windowed granger causal inference strategy improves discovery of gene regulatory networks. Proc. Nat. Acad. Sci. 115, 2252–2257 (2018)CrossRef Finkle, J.D., Wu, J., Bagheri, N.: Windowed granger causal inference strategy improves discovery of gene regulatory networks. Proc. Nat. Acad. Sci. 115, 2252–2257 (2018)CrossRef
9.
Zurück zum Zitat Fujii, C., Kuwahara, H., Yu, G., et al.: Learning gene regulatory networks from gene expression data using weighted consensus. Neurocomputing 220, 23–33 (2017)CrossRef Fujii, C., Kuwahara, H., Yu, G., et al.: Learning gene regulatory networks from gene expression data using weighted consensus. Neurocomputing 220, 23–33 (2017)CrossRef
10.
Zurück zum Zitat Gan, Y., Hu, X., Zou, G., et al.: Inferring gene regulatory networks from single-cell transcriptomic data using bidirectional RNN. Front. Oncol. 12 (2022) Gan, Y., Hu, X., Zou, G., et al.: Inferring gene regulatory networks from single-cell transcriptomic data using bidirectional RNN. Front. Oncol. 12 (2022)
11.
Zurück zum Zitat García-Nieto, J., Nebro, A.J., Aldana-Montes, J.F.: Inference of gene regulatory networks with multi-objective cellular genetic algorithm. Comput. Biol. Chem. 80, 409–418 (2019)CrossRef García-Nieto, J., Nebro, A.J., Aldana-Montes, J.F.: Inference of gene regulatory networks with multi-objective cellular genetic algorithm. Comput. Biol. Chem. 80, 409–418 (2019)CrossRef
12.
Zurück zum Zitat Ghazikhani, A., Akbarzadeh, T., Monsefi, R.: Genetic regulatory network inference using recurrent neural networks trained by a multi agent system. In: 2011 1st International eConference on Computer and Knowledge Engineering (ICCKE) (2011) Ghazikhani, A., Akbarzadeh, T., Monsefi, R.: Genetic regulatory network inference using recurrent neural networks trained by a multi agent system. In: 2011 1st International eConference on Computer and Knowledge Engineering (ICCKE) (2011)
13.
Zurück zum Zitat Gong, M., Peng, Z., Ma, L., Huang, J.: Global biological network alignment by using efficient memetic algorithm. IEEE/ACM Trans. Comput. Biol. Bioinf. 13(6), 1117–1129 (2015)CrossRef Gong, M., Peng, Z., Ma, L., Huang, J.: Global biological network alignment by using efficient memetic algorithm. IEEE/ACM Trans. Comput. Biol. Bioinf. 13(6), 1117–1129 (2015)CrossRef
14.
Zurück zum Zitat Han, P., Gopalakrishnan, C., Yu, H., Wang, E.: Gene regulatory network rewiring in the immune cells associated with cancer. Genes 8(11), 308 (2017)CrossRef Han, P., Gopalakrishnan, C., Yu, H., Wang, E.: Gene regulatory network rewiring in the immune cells associated with cancer. Genes 8(11), 308 (2017)CrossRef
15.
Zurück zum Zitat Hillerton, T., et al.: Fast and accurate gene regulatory network inference by normalized least squares regression. Bioinformatics 38(8), 2263–2268 (2022)CrossRef Hillerton, T., et al.: Fast and accurate gene regulatory network inference by normalized least squares regression. Bioinformatics 38(8), 2263–2268 (2022)CrossRef
16.
Zurück zum Zitat Hurtado, S., Garcia-Nieto, J., Navas-Delgado, I., Nebro, A.J., Aldana-Montes, J.F.: Reconstruction of gene regulatory networks with multi-objective particle swarm optimisers. Appl. Intell. 51, 1972–1991 (2021)CrossRef Hurtado, S., Garcia-Nieto, J., Navas-Delgado, I., Nebro, A.J., Aldana-Montes, J.F.: Reconstruction of gene regulatory networks with multi-objective particle swarm optimisers. Appl. Intell. 51, 1972–1991 (2021)CrossRef
17.
Zurück zum Zitat Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5(9), e12776 (2010)CrossRef Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5(9), e12776 (2010)CrossRef
19.
Zurück zum Zitat Khojasteh, H., Khanteymoori, A., Olyaee, M.H.: EnGRNT: inference of gene regulatory networks using ensemble methods and topological feature extraction. Inform. Med. Unlocked 27, 100773 (2021)CrossRef Khojasteh, H., Khanteymoori, A., Olyaee, M.H.: EnGRNT: inference of gene regulatory networks using ensemble methods and topological feature extraction. Inform. Med. Unlocked 27, 100773 (2021)CrossRef
20.
Zurück zum Zitat Kizaki, N., et al.: The inference method of the gene regulatory network with a majority rule. Nonlinear Theory Appl. IEICE 6, 226–236 (2015)CrossRef Kizaki, N., et al.: The inference method of the gene regulatory network with a majority rule. Nonlinear Theory Appl. IEICE 6, 226–236 (2015)CrossRef
21.
Zurück zum Zitat de Lima Corrêa, L., Dorn, M.: A multi-population memetic algorithm for the 3-D protein structure prediction problem. Swarm Evol. Comput. 55, 100677 (2020)CrossRef de Lima Corrêa, L., Dorn, M.: A multi-population memetic algorithm for the 3-D protein structure prediction problem. Swarm Evol. Comput. 55, 100677 (2020)CrossRef
22.
Zurück zum Zitat Liu, L., et al.: Reconstructing gene regulatory networks via memetic algorithm and lasso based on recurrent neural networks. Soft. Comput. 24, 4205–4221 (2020)CrossRef Liu, L., et al.: Reconstructing gene regulatory networks via memetic algorithm and lasso based on recurrent neural networks. Soft. Comput. 24, 4205–4221 (2020)CrossRef
23.
Zurück zum Zitat Liu, W., et al.: Inferring gene regulatory networks using the improved Markov blanket discovery algorithm. Interdisc. Sci. Comput. Life Sci. 1–14 (2022) Liu, W., et al.: Inferring gene regulatory networks using the improved Markov blanket discovery algorithm. Interdisc. Sci. Comput. Life Sci. 1–14 (2022)
24.
Zurück zum Zitat Marbach, D., Costello, J.C., Küffner, R., et al.: Wisdom of crowds for robust gene network inference. Nat. Methods 9(8), 796–804 (2012)CrossRef Marbach, D., Costello, J.C., Küffner, R., et al.: Wisdom of crowds for robust gene network inference. Nat. Methods 9(8), 796–804 (2012)CrossRef
26.
Zurück zum Zitat Meyer, P., Saez-Rodriguez, J.: Advances in systems biology modeling: 10 years of crowdsourcing dream challenges. Cell Syst. 12(6), 636–653 (2021)CrossRef Meyer, P., Saez-Rodriguez, J.: Advances in systems biology modeling: 10 years of crowdsourcing dream challenges. Cell Syst. 12(6), 636–653 (2021)CrossRef
27.
Zurück zum Zitat Moerman, T., et al.: GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35(12), 2159–2161 (2018)CrossRef Moerman, T., et al.: GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35(12), 2159–2161 (2018)CrossRef
28.
Zurück zum Zitat Narasimhan, S., Rengaswamy, R., Vadigepalli, R.: Structural properties of gene regulatory networks: definitions and connections. IEEE/ACM Trans. Comput. Biol. Bioinf. 6(1), 158–170 (2009)CrossRef Narasimhan, S., Rengaswamy, R., Vadigepalli, R.: Structural properties of gene regulatory networks: definitions and connections. IEEE/ACM Trans. Comput. Biol. Bioinf. 6(1), 158–170 (2009)CrossRef
29.
Zurück zum Zitat Nazarieh, M., Wiese, A., Will, T., Hamed, M., Helms, V.: Identification of key player genes in gene regulatory networks. BMC Syst. Biol. 10, 1–12 (2016)CrossRef Nazarieh, M., Wiese, A., Will, T., Hamed, M., Helms, V.: Identification of key player genes in gene regulatory networks. BMC Syst. Biol. 10, 1–12 (2016)CrossRef
30.
Zurück zum Zitat Parikshak, N.N., et al.: Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat. Rev. Genet. 16(8), 441–458 (2015)CrossRef Parikshak, N.N., et al.: Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat. Rev. Genet. 16(8), 441–458 (2015)CrossRef
31.
Zurück zum Zitat Peignier, S., Sorin, B., Calevro, F.: Ensemble learning based gene regulatory network inference. In: 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 113–120 (2021) Peignier, S., Sorin, B., Calevro, F.: Ensemble learning based gene regulatory network inference. In: 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 113–120 (2021)
32.
Zurück zum Zitat Schmitt, P., et al.: GReNaDIne: a data-driven python library to infer gene regulatory networks from gene expression data. Genes 14(2), 269 (2023)CrossRef Schmitt, P., et al.: GReNaDIne: a data-driven python library to infer gene regulatory networks from gene expression data. Genes 14(2), 269 (2023)CrossRef
33.
Zurück zum Zitat Segura-Ortiz, A., García-Nieto, J., et al.: GENECI: a novel evolutionary machine learning consensus-based approach for the inference of gene regulatory networks. Comput. Biol. Med. 155, 106653 (2023)CrossRef Segura-Ortiz, A., García-Nieto, J., et al.: GENECI: a novel evolutionary machine learning consensus-based approach for the inference of gene regulatory networks. Comput. Biol. Med. 155, 106653 (2023)CrossRef
34.
Zurück zum Zitat Skok Gibbs, C., et al.: High-performance single-cell gene regulatory network inference at scale: the inferelator 3.0. Bioinformatics 38(9), 2519–2528 (2022) Skok Gibbs, C., et al.: High-performance single-cell gene regulatory network inference at scale: the inferelator 3.0. Bioinformatics 38(9), 2519–2528 (2022)
35.
Zurück zum Zitat Watanabe, Y., Seno, S., Takenaka, Y., Matsuda, H.: An estimation method for inference of gene regulatory network using Bayesian network with uniting of partial problems. BMC Genom. 13, S12 (2012)CrossRef Watanabe, Y., Seno, S., Takenaka, Y., Matsuda, H.: An estimation method for inference of gene regulatory network using Bayesian network with uniting of partial problems. BMC Genom. 13, S12 (2012)CrossRef
36.
Zurück zum Zitat Wijst, M.G.V.D., Vries, D.H.D., Brugge, H., Westra, H.J., Franke, L.: An integrative approach for building personalized gene regulatory networks for precision medicine. Genome Med. 10(1), 1–15 (2018) Wijst, M.G.V.D., Vries, D.H.D., Brugge, H., Westra, H.J., Franke, L.: An integrative approach for building personalized gene regulatory networks for precision medicine. Genome Med. 10(1), 1–15 (2018)
37.
Zurück zum Zitat Wu, J., Zhao, X., Lin, Z., Shao, Z.: Large scale gene regulatory network inference with a multi-level strategy. Mol. BioSyst. 12, 588–597 (2016)CrossRef Wu, J., Zhao, X., Lin, Z., Shao, Z.: Large scale gene regulatory network inference with a multi-level strategy. Mol. BioSyst. 12, 588–597 (2016)CrossRef
38.
Zurück zum Zitat Yang, B., Xu, Y.: Reconstructing gene regulation network based on conditional mutual information. In: Proceedings of the 2017 International Conference on Mechanical, Electronic, Control and Automation Engineering (MECAE 2017) (2017) Yang, B., Xu, Y.: Reconstructing gene regulation network based on conditional mutual information. In: Proceedings of the 2017 International Conference on Mechanical, Electronic, Control and Automation Engineering (MECAE 2017) (2017)
39.
Zurück zum Zitat Yasuki, H., Kikuchi, M., Kurokawa, H.: Inferring method of the gene regulatory networks using neural networks adopting a majority rule. In: The 2011 International Joint Conference on Neural Networks (2011) Yasuki, H., Kikuchi, M., Kurokawa, H.: Inferring method of the gene regulatory networks using neural networks adopting a majority rule. In: The 2011 International Joint Conference on Neural Networks (2011)
40.
Zurück zum Zitat Yin, F., Zhou, J., Xie, W., Zhu, Z.: Inferring sparse genetic regulatory networks based on maximum-entropy probability model and multi-objective memetic algorithm. Memetic Comput. 15(1), 117–137 (2023)CrossRef Yin, F., Zhou, J., Xie, W., Zhu, Z.: Inferring sparse genetic regulatory networks based on maximum-entropy probability model and multi-objective memetic algorithm. Memetic Comput. 15(1), 117–137 (2023)CrossRef
41.
Zurück zum Zitat Zarayeneh, N., et al.: Integration of multi-omics data for integrative gene regulatory network inference. Int. J. Data Min. Bioinform. 18, 223 (2017)CrossRef Zarayeneh, N., et al.: Integration of multi-omics data for integrative gene regulatory network inference. Int. J. Data Min. Bioinform. 18, 223 (2017)CrossRef
42.
Zurück zum Zitat Zhao, M., He, W., Tang, J., Zou, Q., Guo, F.: A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data. Briefings Bioinformat. 23(2), bbab568 (2022) Zhao, M., He, W., Tang, J., Zou, Q., Guo, F.: A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data. Briefings Bioinformat. 23(2), bbab568 (2022)
Metadaten
Titel
Exploiting Medical-Expert Knowledge Via a Novel Memetic Algorithm for the Inference of Gene Regulatory Networks
verfasst von
Adrián Segura-Ortiz
José García-Nieto
José F. Aldana-Montes
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-63772-8_1