Skip to main content
Erschienen in:

15.07.2024

Exploiting smartphone defence: a novel adversarial malware dataset and approach for adversarial malware detection

verfasst von: Tae hoon Kim, Moez Krichen, Meznah A. Alamro, Alaeddine Mihoub, Gabriel Avelino Sampedro, Sidra Abbas

Erschienen in: Peer-to-Peer Networking and Applications | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Die rasche Verbreitung von Smartphones hat zu einer Zunahme von Malware geführt, die auf Android-Geräte abzielt. Statische Malware-Analysen sind zwar populär, aber anfällig für feindliche Angriffe. Dieser Artikel stellt einen neuartigen Ansatz vor, der einen Datensatz mit injizierten feindlichen Angriffen verwendet, um die Erkennung solcher Malware zu verbessern. Die Forschung setzt verschiedene Modelle des maschinellen Lernens ein, darunter Random Forest, Extreme Gradient Boosting und Deep Neural Networks, um Malware wirksam zu erkennen. Die vorgeschlagene Methode zeigt eine überlegene Leistung, insbesondere mit dem XGB-Modell, das eine Genauigkeit von 88% auf dem ADD-1-Datensatz erreicht. Die Studie unterstreicht die Bedeutung von Robustheit in maschinellen Lernmodellen und bietet eine umfassende Bewertung verschiedener Ansätze zur Bekämpfung feindlicher Angriffe im Zusammenhang mit der Sicherheit von Smartphones.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bostani H, Moonsamy V (2024) Evadedroid: A practical evasion attack on machine learning for black-box android malware detection. Comput Secur 139:103676CrossRef Bostani H, Moonsamy V (2024) Evadedroid: A practical evasion attack on machine learning for black-box android malware detection. Comput Secur 139:103676CrossRef
2.
Zurück zum Zitat Smmarwar SK, Gupta GP, Kumar S (2024) Android malware detection and identification frameworks by leveraging the machine and deep learning techniques: A comprehensive review. Telemat Inform Rep, p 100130 Smmarwar SK, Gupta GP, Kumar S (2024) Android malware detection and identification frameworks by leveraging the machine and deep learning techniques: A comprehensive review. Telemat Inform Rep, p 100130
3.
Zurück zum Zitat Feng J, Shen L, Chen Z et al (2020) A two-layer deep learning method for android malware detection using network traffic. Ieee Access 8:125786–125796CrossRef Feng J, Shen L, Chen Z et al (2020) A two-layer deep learning method for android malware detection using network traffic. Ieee Access 8:125786–125796CrossRef
4.
Zurück zum Zitat Or-Meir O, Nissim N, Elovici Y et al (2019) Dynamic malware analysis in the modern era—a state of the art survey. ACM Comput Surv (CSUR) 52(5):1–48CrossRef Or-Meir O, Nissim N, Elovici Y et al (2019) Dynamic malware analysis in the modern era—a state of the art survey. ACM Comput Surv (CSUR) 52(5):1–48CrossRef
5.
Zurück zum Zitat Wang Z (2018) Deep learning-based intrusion detection with adversaries. IEEE Access 6:38367–38384CrossRef Wang Z (2018) Deep learning-based intrusion detection with adversaries. IEEE Access 6:38367–38384CrossRef
6.
Zurück zum Zitat Haroon MS, Ali HM (2022) Adversarial training against adversarial attacks for machine learning-based intrusion detection systems. Comput Mater Contin 73(2) Haroon MS, Ali HM (2022) Adversarial training against adversarial attacks for machine learning-based intrusion detection systems. Comput Mater Contin 73(2)
8.
Zurück zum Zitat Khanna A, Kaur S (2020) Internet of things (iot), applications and challenges: a comprehensive review. Wireless Pers Commun 114:1687–1762CrossRef Khanna A, Kaur S (2020) Internet of things (iot), applications and challenges: a comprehensive review. Wireless Pers Commun 114:1687–1762CrossRef
9.
Zurück zum Zitat Sfar AR, Natalizio E, Challal Y et al (2018) A roadmap for security challenges in the internet of things. Digit Commun Netw 4(2):118–137CrossRef Sfar AR, Natalizio E, Challal Y et al (2018) A roadmap for security challenges in the internet of things. Digit Commun Netw 4(2):118–137CrossRef
10.
Zurück zum Zitat Chaabouni N, Mosbah M, Zemmari A et al (2019) Network intrusion detection for iot security based on learning techniques. IEEE Commun Surv Tutor 21(3):2671–2701CrossRef Chaabouni N, Mosbah M, Zemmari A et al (2019) Network intrusion detection for iot security based on learning techniques. IEEE Commun Surv Tutor 21(3):2671–2701CrossRef
11.
Zurück zum Zitat Namanya AP, Cullen A, Awan IU et al (2018) The world of malware: An overview. In: 2018 IEEE 6th international conference on future internet of things and cloud (FiCloud), IEEE, pp 420–427 Namanya AP, Cullen A, Awan IU et al (2018) The world of malware: An overview. In: 2018 IEEE 6th international conference on future internet of things and cloud (FiCloud), IEEE, pp 420–427
12.
Zurück zum Zitat Liu Y, Wang J, Li J et al (2021) Machine learning for the detection and identification of internet of things devices: A survey. IEEE Internet Things J 9(1):298–320CrossRef Liu Y, Wang J, Li J et al (2021) Machine learning for the detection and identification of internet of things devices: A survey. IEEE Internet Things J 9(1):298–320CrossRef
13.
Zurück zum Zitat Benazzouza S, Ridouani M, Salahdine F et al (2022) A novel prediction model for malicious users detection and spectrum sensing based on stacking and deep learning. Sensors 22(17):6477CrossRef Benazzouza S, Ridouani M, Salahdine F et al (2022) A novel prediction model for malicious users detection and spectrum sensing based on stacking and deep learning. Sensors 22(17):6477CrossRef
14.
Zurück zum Zitat Ridouani M, Benazzouza S, Salahdine F et al (2022) A novel secure cooperative cognitive radio network based on chebyshev map. Digit Signal Process 126:103482CrossRef Ridouani M, Benazzouza S, Salahdine F et al (2022) A novel secure cooperative cognitive radio network based on chebyshev map. Digit Signal Process 126:103482CrossRef
15.
Zurück zum Zitat Xu H, Ma Y, Liu HC et al (2020) Adversarial attacks and defenses in images, graphs and text: A review. Int J Autom Comput 17:151–178CrossRef Xu H, Ma Y, Liu HC et al (2020) Adversarial attacks and defenses in images, graphs and text: A review. Int J Autom Comput 17:151–178CrossRef
16.
Zurück zum Zitat Akhtar N, Mian A, Kardan N et al (2021) Advances in adversarial attacks and defenses in computer vision: A survey. IEEE Access 9:155161–155196CrossRef Akhtar N, Mian A, Kardan N et al (2021) Advances in adversarial attacks and defenses in computer vision: A survey. IEEE Access 9:155161–155196CrossRef
17.
Zurück zum Zitat Naitali A, Ridouani M, Salahdine F et al (2023) Deepfake attacks: Generation, detection, datasets, challenges, and research directions. Computers 12(10):216CrossRef Naitali A, Ridouani M, Salahdine F et al (2023) Deepfake attacks: Generation, detection, datasets, challenges, and research directions. Computers 12(10):216CrossRef
18.
Zurück zum Zitat Ibitoye O, Abou-Khamis R, Shehaby M et al (2019) The threat of adversarial attacks on machine learning in network security–a survey. arXiv preprint arXiv:1911.02621 Ibitoye O, Abou-Khamis R, Shehaby M et al (2019) The threat of adversarial attacks on machine learning in network security–a survey. arXiv preprint arXiv:​1911.​02621
19.
Zurück zum Zitat Jmila H, Khedher MI (2022) Adversarial machine learning for network intrusion detection: A comparative study. Comput Netw 214:109073CrossRef Jmila H, Khedher MI (2022) Adversarial machine learning for network intrusion detection: A comparative study. Comput Netw 214:109073CrossRef
20.
Zurück zum Zitat Biggio B, Roli F (2018) Wild patterns: Ten years after the rise of adversarial machine learning. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp 2154–2156 Biggio B, Roli F (2018) Wild patterns: Ten years after the rise of adversarial machine learning. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp 2154–2156
21.
Zurück zum Zitat Rashid MM, Kamruzzaman J, Hassan MM et al (2022) Adversarial training for deep learning-based cyberattack detection in iot-based smart city applications. Comput Secur 120:102783CrossRef Rashid MM, Kamruzzaman J, Hassan MM et al (2022) Adversarial training for deep learning-based cyberattack detection in iot-based smart city applications. Comput Secur 120:102783CrossRef
22.
Zurück zum Zitat Albattah A, Rassam MA (2023) Detection of adversarial attacks against the hybrid convolutional long short-term memory deep learning technique for healthcare monitoring applications. Appl Sci 13(11):6807CrossRef Albattah A, Rassam MA (2023) Detection of adversarial attacks against the hybrid convolutional long short-term memory deep learning technique for healthcare monitoring applications. Appl Sci 13(11):6807CrossRef
23.
Zurück zum Zitat Huang Y, Hu H, Chen C (2021) Robustness of on-device models: Adversarial attack to deep learning models on android apps. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), IEEE, pp 101–110 Huang Y, Hu H, Chen C (2021) Robustness of on-device models: Adversarial attack to deep learning models on android apps. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), IEEE, pp 101–110
24.
Zurück zum Zitat Mani N, Moh M, Moh TS (2021) Defending deep learning models against adversarial attacks. Int J Softw Sci Comput Intell (IJSSCI) 13(1):72–89 Mani N, Moh M, Moh TS (2021) Defending deep learning models against adversarial attacks. Int J Softw Sci Comput Intell (IJSSCI) 13(1):72–89
25.
Zurück zum Zitat Yang Z, Abbasi IA, Algarni F et al (2021) An iot time series data security model for adversarial attack based on thermometer encoding. Secur Commun Netw 2021:1–11CrossRef Yang Z, Abbasi IA, Algarni F et al (2021) An iot time series data security model for adversarial attack based on thermometer encoding. Secur Commun Netw 2021:1–11CrossRef
26.
Zurück zum Zitat Visaggio CA, Marulli F, Laudanna S et al (2021) A comparative study of adversarial attacks to malware detectors based on deep learning. Malware Analysis Using Artificial Intelligence and Deep Learning, pp 477–511 Visaggio CA, Marulli F, Laudanna S et al (2021) A comparative study of adversarial attacks to malware detectors based on deep learning. Malware Analysis Using Artificial Intelligence and Deep Learning, pp 477–511
27.
Zurück zum Zitat Finlayson SG, Chung HW, Kohane IS et al (2018) Adversarial attacks against medical deep learning systems. arXiv preprint arXiv:1804.05296 Finlayson SG, Chung HW, Kohane IS et al (2018) Adversarial attacks against medical deep learning systems. arXiv preprint arXiv:​1804.​05296
28.
Zurück zum Zitat Ma X, Niu Y, Gu L et al (2021) Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recogn 110:107332CrossRef Ma X, Niu Y, Gu L et al (2021) Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recogn 110:107332CrossRef
29.
Zurück zum Zitat Madry A, Makelov A, Schmidt L et al (2017) Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 Madry A, Makelov A, Schmidt L et al (2017) Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:​1706.​06083
30.
Zurück zum Zitat Li H, Zhou S, Yuan W et al (2019) Adversarial-example attacks toward android malware detection system. IEEE Syst J 14(1):653–656CrossRef Li H, Zhou S, Yuan W et al (2019) Adversarial-example attacks toward android malware detection system. IEEE Syst J 14(1):653–656CrossRef
31.
Zurück zum Zitat Rathore H, Sahay SK, Nikam P et al (2021) Robust android malware detection system against adversarial attacks using q-learning. Inf Syst Front 23:867–882CrossRef Rathore H, Sahay SK, Nikam P et al (2021) Robust android malware detection system against adversarial attacks using q-learning. Inf Syst Front 23:867–882CrossRef
32.
Zurück zum Zitat Chen S, Xue M, Fan L et al (2018) Automated poisoning attacks and defenses in malware detection systems: An adversarial machine learning approach. Comput Secur 73:326–344CrossRef Chen S, Xue M, Fan L et al (2018) Automated poisoning attacks and defenses in malware detection systems: An adversarial machine learning approach. Comput Secur 73:326–344CrossRef
33.
Zurück zum Zitat Gálvez R, Moonsamy V, Diaz C (2020) Less is more: A privacy-respecting android malware classifier using federated learning. arXiv preprint arXiv:2007.08319 Gálvez R, Moonsamy V, Diaz C (2020) Less is more: A privacy-respecting android malware classifier using federated learning. arXiv preprint arXiv:​2007.​08319
34.
Zurück zum Zitat Taheri R, Shojafar M, Alazab M et al (2020) Fed-iiot: A robust federated malware detection architecture in industrial iot. IEEE Trans Industr Inf 17(12):8442–8452CrossRef Taheri R, Shojafar M, Alazab M et al (2020) Fed-iiot: A robust federated malware detection architecture in industrial iot. IEEE Trans Industr Inf 17(12):8442–8452CrossRef
35.
Zurück zum Zitat Wang C, Zhang L, Zhao K et al (2021) Advandmal: Adversarial training for android malware detection and family classification. Symmetry 13(6):1081CrossRef Wang C, Zhang L, Zhao K et al (2021) Advandmal: Adversarial training for android malware detection and family classification. Symmetry 13(6):1081CrossRef
36.
Zurück zum Zitat Taheri R, Javidan R, Shojafar M et al (2020) Can machine learning model with static features be fooled: an adversarial machine learning approach. Clust Comput 23:3233–3253CrossRef Taheri R, Javidan R, Shojafar M et al (2020) Can machine learning model with static features be fooled: an adversarial machine learning approach. Clust Comput 23:3233–3253CrossRef
37.
Zurück zum Zitat Taheri R, Javidan R, Shojafar M et al (2020) On defending against label flipping attacks on malware detection systems. Neural Comput Appl 32:14781–14800CrossRef Taheri R, Javidan R, Shojafar M et al (2020) On defending against label flipping attacks on malware detection systems. Neural Comput Appl 32:14781–14800CrossRef
38.
Zurück zum Zitat Sharma N, Bhandari HV, Yadav NS et al (2020) Optimization of ids using filter-based feature selection and machine learning algorithms. Int J Innov Technol Explor Eng 10(2):96–102CrossRef Sharma N, Bhandari HV, Yadav NS et al (2020) Optimization of ids using filter-based feature selection and machine learning algorithms. Int J Innov Technol Explor Eng 10(2):96–102CrossRef
39.
40.
Zurück zum Zitat Chen T, He T, Benesty M et al (2015) Xgboost: extreme gradient boosting. R package version 04-2 1(4):1–4 Chen T, He T, Benesty M et al (2015) Xgboost: extreme gradient boosting. R package version 04-2 1(4):1–4
41.
Zurück zum Zitat Song YY, Ying L (2015) Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry 27(2):130 Song YY, Ying L (2015) Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry 27(2):130
Metadaten
Titel
Exploiting smartphone defence: a novel adversarial malware dataset and approach for adversarial malware detection
verfasst von
Tae hoon Kim
Moez Krichen
Meznah A. Alamro
Alaeddine Mihoub
Gabriel Avelino Sampedro
Sidra Abbas
Publikationsdatum
15.07.2024
Verlag
Springer US
Erschienen in
Peer-to-Peer Networking and Applications / Ausgabe 5/2024
Print ISSN: 1936-6442
Elektronische ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-024-01751-6