Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 9/2012

01.09.2012 | Original Article

Exploiting sparsity and low-rank structure for the recovery of multi-slice breast MRIs with reduced sampling error

verfasst von: X. X. Yin, B. W.-H. Ng, K. Ramamohanarao, A. Baghai-Wadji, D. Abbott

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 9/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It has been shown that, magnetic resonance images (MRIs) with sparsity representation in a transformed domain, e.g. spatial finite-differences (FD), or discrete cosine transform (DCT), can be restored from undersampled k-space via applying current compressive sampling theory. The paper presents a model-based method for the restoration of MRIs. The reduced-order model, in which a full-system-response is projected onto a subspace of lower dimensionality, has been used to accelerate image reconstruction by reducing the size of the involved linear system. In this paper, the singular value threshold (SVT) technique is applied as a denoising scheme to reduce and select the model order of the inverse Fourier transform image, and to restore multi-slice breast MRIs that have been compressively sampled in k-space. The restored MRIs with SVT for denoising show reduced sampling errors compared to the direct MRI restoration methods via spatial FD, or DCT. Compressive sampling is a technique for finding sparse solutions to underdetermined linear systems. The sparsity that is implicit in MRIs is to explore the solution to MRI reconstruction after transformation from significantly undersampled k-space. The challenge, however, is that, since some incoherent artifacts result from the random undersampling, noise-like interference is added to the image with sparse representation. These recovery algorithms in the literature are not capable of fully removing the artifacts. It is necessary to introduce a denoising procedure to improve the quality of image recovery. This paper applies a singular value threshold algorithm to reduce the model order of image basis functions, which allows further improvement of the quality of image reconstruction with removal of noise artifacts. The principle of the denoising scheme is to reconstruct the sparse MRI matrices optimally with a lower rank via selecting smaller number of dominant singular values. The singular value threshold algorithm is performed by minimizing the nuclear norm of difference between the sampled image and the recovered image. It has been illustrated that this algorithm improves the ability of previous image reconstruction algorithms to remove noise artifacts while significantly improving the quality of MRI recovery.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195PubMedCrossRef Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195PubMedCrossRef
2.
Zurück zum Zitat Ljunggren S (1983) A simple graphical representation of fourier-based imaging methods. J Magn Reson 54(2):338–343 Ljunggren S (1983) A simple graphical representation of fourier-based imaging methods. J Magn Reson 54(2):338–343
3.
Zurück zum Zitat Twieg D (1983) The k-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods. Med Phys 10(5):610–621PubMedCrossRef Twieg D (1983) The k-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods. Med Phys 10(5):610–621PubMedCrossRef
4.
Zurück zum Zitat Tsaig Y, Donoho D (2006) Extensions of compressed sensing. Signal Process 86(3):533–548CrossRef Tsaig Y, Donoho D (2006) Extensions of compressed sensing. Signal Process 86(3):533–548CrossRef
5.
Zurück zum Zitat Chralampidis D, Kasparis T, Georgiopoulos M (2001) Classification of noisy signals using fuzzy ARTMAP neural networks. IEEE Trans Neural Netw 12(5):1023–1036PubMedCrossRef Chralampidis D, Kasparis T, Georgiopoulos M (2001) Classification of noisy signals using fuzzy ARTMAP neural networks. IEEE Trans Neural Netw 12(5):1023–1036PubMedCrossRef
6.
Zurück zum Zitat Wichmann F, Braun D, Gegenfurtner K (2006) Phase noise and the classification of natural images. Vis Res 46(8–9):1520–1529PubMedCrossRef Wichmann F, Braun D, Gegenfurtner K (2006) Phase noise and the classification of natural images. Vis Res 46(8–9):1520–1529PubMedCrossRef
7.
Zurück zum Zitat Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series. Wiley, New York Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series. Wiley, New York
8.
Zurück zum Zitat Cai JF, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion’. SIAM J Optim 20(4):1956–1982CrossRef Cai JF, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion’. SIAM J Optim 20(4):1956–1982CrossRef
9.
Zurück zum Zitat Lingala S, Yue H, DiBella E, Jacob M (2011) Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR’. IEEE Trans Med Imaging 30(5):1042–1054PubMedCrossRef Lingala S, Yue H, DiBella E, Jacob M (2011) Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR’. IEEE Trans Med Imaging 30(5):1042–1054PubMedCrossRef
10.
Zurück zum Zitat Recht B, Fazel M, Parrilo PA (2010) Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev 52(3):471–501CrossRef Recht B, Fazel M, Parrilo PA (2010) Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev 52(3):471–501CrossRef
11.
Zurück zum Zitat Osher S, Mao Y, Dong B, Yin W (2010) Fast linearized Bregman iteration for compressive sensing and sparse denoising. Commun Math Sci 8(1):93–111 Osher S, Mao Y, Dong B, Yin W (2010) Fast linearized Bregman iteration for compressive sensing and sparse denoising. Commun Math Sci 8(1):93–111
12.
Zurück zum Zitat Antoulas A (2005) Approximation of large-scale dynamical systems. SIAM, New YorkCrossRef Antoulas A (2005) Approximation of large-scale dynamical systems. SIAM, New YorkCrossRef
13.
Zurück zum Zitat Golub GH, Van Loan CF (1996) Matrix computations. The John Hopkins University Press, Baltimore, MD Golub GH, Van Loan CF (1996) Matrix computations. The John Hopkins University Press, Baltimore, MD
14.
Zurück zum Zitat Schneider MK, Willsky A (2001) Krylov subspace estimation. SIAM J Sci Comput 22(5):1840–1864CrossRef Schneider MK, Willsky A (2001) Krylov subspace estimation. SIAM J Sci Comput 22(5):1840–1864CrossRef
15.
Zurück zum Zitat Bai Z (2002) Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl Num Math 43(1–2):9–44CrossRef Bai Z (2002) Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl Num Math 43(1–2):9–44CrossRef
16.
Zurück zum Zitat Rudin L, Osher S, Fatemi E (1992) Non-linear total variation noise removal algorithm. Phys D 60:259–268CrossRef Rudin L, Osher S, Fatemi E (1992) Non-linear total variation noise removal algorithm. Phys D 60:259–268CrossRef
17.
Zurück zum Zitat Huynh-Thu Q, Ghanbari M (2008) Scope of validity of PSNR in image/video quality assessment. Electron Lett 44:800–801CrossRef Huynh-Thu Q, Ghanbari M (2008) Scope of validity of PSNR in image/video quality assessment. Electron Lett 44:800–801CrossRef
18.
Zurück zum Zitat Mu T, Nandi AK, Rangayyan RM (2007) Classification of breast masses via nonlinear transformation of features based on a kernel matrix. Med Biol Eng Comput 45(8):769–780PubMedCrossRef Mu T, Nandi AK, Rangayyan RM (2007) Classification of breast masses via nonlinear transformation of features based on a kernel matrix. Med Biol Eng Comput 45(8):769–780PubMedCrossRef
19.
Zurück zum Zitat Sun F, Morris D, Babyn P (2009) The optimal linear transformation-based fMRI feature space analysis. Med Biol Eng Comput 47(11):1119–1129PubMedCrossRef Sun F, Morris D, Babyn P (2009) The optimal linear transformation-based fMRI feature space analysis. Med Biol Eng Comput 47(11):1119–1129PubMedCrossRef
20.
Zurück zum Zitat Yin XX, Ng BW-H, Yang Q, Pitman A, Ramamohanarao K, Abbott D (2012) Anatomical landmark localization in breast dynamic contrast-enhanced MR imaging. Med Biol Eng Comput 50(1):91–101PubMedCrossRef Yin XX, Ng BW-H, Yang Q, Pitman A, Ramamohanarao K, Abbott D (2012) Anatomical landmark localization in breast dynamic contrast-enhanced MR imaging. Med Biol Eng Comput 50(1):91–101PubMedCrossRef
Metadaten
Titel
Exploiting sparsity and low-rank structure for the recovery of multi-slice breast MRIs with reduced sampling error
verfasst von
X. X. Yin
B. W.-H. Ng
K. Ramamohanarao
A. Baghai-Wadji
D. Abbott
Publikationsdatum
01.09.2012
Verlag
Springer-Verlag
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 9/2012
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-012-0920-x

Weitere Artikel der Ausgabe 9/2012

Medical & Biological Engineering & Computing 9/2012 Zur Ausgabe