Skip to main content

2021 | OriginalPaper | Buchkapitel

12. Explorative Synthesis of Novel Nitride Compounds by Ammonothermal Synthesis

verfasst von : Mathias Mallmann, Niklas Cordes, Wolfgang Schnick

Erschienen in: Ammonothermal Synthesis and Crystal Growth of Nitrides

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides a brief overview of the synthesis of nitrides and oxonitrides by the ammonothermal method. Numerous binary, ternary and multinary nitrides as well as oxonitrides are discussed. The synthesis conditions with regard to the temperatures, pressures, precursors and mineralizers are mentioned. In addition, the crystal structure of the respective compounds will be briefly described. Since most of these compounds possess interesting electronic and optical properties, the bandgaps of the compounds are discussed in more detail and are summarized at the end.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Juza, H. Jacobs, Ammonothermalsynthese von Magnesium‐ und Berylliumamid. Angew. Chem. 78, 208 (1966). R. Juza, H. Jacobs, Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966) R. Juza, H. Jacobs, Ammonothermalsynthese von Magnesium‐ und Berylliumamid. Angew. Chem. 78, 208 (1966). R. Juza, H. Jacobs, Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966)
2.
Zurück zum Zitat H. Jacobs, D. Schmidt, High-pressure ammonolysis in solid-state chemistry. Curr. Top. Mater. Sci. 8, 381 (1982) H. Jacobs, D. Schmidt, High-pressure ammonolysis in solid-state chemistry. Curr. Top. Mater. Sci. 8, 381 (1982)
3.
Zurück zum Zitat H. Jacobs, U. Fink, Investigation of the system potassium/europium/ammonia. Z. Anorg. Allg. Chem. 438, 151 (1978)CrossRef H. Jacobs, U. Fink, Investigation of the system potassium/europium/ammonia. Z. Anorg. Allg. Chem. 438, 151 (1978)CrossRef
4.
Zurück zum Zitat H. Jacobs, D. Schmidt, Struktur und Eigenschaften von perowskitartigen Cäsiumamidometallaten des Cers, Neodyms und Samariums Cs3Ln2(NH2)9. J. Less-Common Met. 76, 227 (1980) H. Jacobs, D. Schmidt, Struktur und Eigenschaften von perowskitartigen Cäsiumamidometallaten des Cers, Neodyms und Samariums Cs3Ln2(NH2)9. J. Less-Common Met. 76, 227 (1980)
5.
Zurück zum Zitat H. Jacobs, H. Kistrup, The system potassium/samarium/ammonia. Z. Anorg. Allg. Chem. 435, 127 (1977)CrossRef H. Jacobs, H. Kistrup, The system potassium/samarium/ammonia. Z. Anorg. Allg. Chem. 435, 127 (1977)CrossRef
6.
Zurück zum Zitat A. Stuhr, H. Jocobs, R. Juza, Amide des Yttriums. Z. Anorg. Allg. Chem. 395, 291 (1973) A. Stuhr, H. Jocobs, R. Juza, Amide des Yttriums. Z. Anorg. Allg. Chem. 395, 291 (1973)
7.
Zurück zum Zitat G. Linde, R. Juza, Amidometallate von Lanthan und Gadolinium und Umsetzung von Lanthan, Gadolinium und Scandium mit Ammoniak. Z. Anorg. Allg. Chem. 409, 191 (1974)CrossRef G. Linde, R. Juza, Amidometallate von Lanthan und Gadolinium und Umsetzung von Lanthan, Gadolinium und Scandium mit Ammoniak. Z. Anorg. Allg. Chem. 409, 191 (1974)CrossRef
8.
Zurück zum Zitat D. Ehrentraut, E. Meissner, M. Bockowski, Technology of Gallium Nitride Crystal Growth (Springer, Berlin, Heidelberg, 2010), p. 3CrossRef D. Ehrentraut, E. Meissner, M. Bockowski, Technology of Gallium Nitride Crystal Growth (Springer, Berlin, Heidelberg, 2010), p. 3CrossRef
9.
Zurück zum Zitat D. Ehrentraut, R.T. Pakalapati, D.S. Kamber, W. Jiang, D.W. Pocius, B.C. Downey, M. McLaurin, M.P. D’Evelyn, High quality, low cost ammonothermal bulk GaN substrates. Jpn. J. Appl. Phys. 52, 08JA01 (2013) D. Ehrentraut, R.T. Pakalapati, D.S. Kamber, W. Jiang, D.W. Pocius, B.C. Downey, M. McLaurin, M.P. D’Evelyn, High quality, low cost ammonothermal bulk GaN substrates. Jpn. J. Appl. Phys. 52, 08JA01 (2013)
10.
Zurück zum Zitat W. Jiang, D. Ehrentraut, J. Cook, D.S. Kamber, R.T. Pakalapati, M.P. D’Evelyn, Transparent, conductive bulk GaN by high temperature ammonothermal growth. Phys. Status Solidi B 252, 1069 (2015)CrossRef W. Jiang, D. Ehrentraut, J. Cook, D.S. Kamber, R.T. Pakalapati, M.P. D’Evelyn, Transparent, conductive bulk GaN by high temperature ammonothermal growth. Phys. Status Solidi B 252, 1069 (2015)CrossRef
11.
Zurück zum Zitat R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, M. Palczewska, A. Wysmolek, M. Kaminska, AMMONO method of BN, AlN and GaN synthesis and crystal growth. MRS Internet J. Nitride Semicond. Res. 3, e25 (1998) R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, M. Palczewska, A. Wysmolek, M. Kaminska, AMMONO method of BN, AlN and GaN synthesis and crystal growth. MRS Internet J. Nitride Semicond. Res. 3, e25 (1998)
12.
Zurück zum Zitat D. Peters, Ammonothermal synthesis of aluminum nitride. J. Cryst. Growth 104, 411 (1990)CrossRef D. Peters, Ammonothermal synthesis of aluminum nitride. J. Cryst. Growth 104, 411 (1990)CrossRef
13.
Zurück zum Zitat Y.C. Lan, X.L. Chen, Y.G. Cao, Y.P. Xu, L.D. Xun, T. Xu, J.K. Liang, Low-temperature synthesis and photoluminescence of AlN. J. Cryst. Growth 207, 247 (1999)CrossRef Y.C. Lan, X.L. Chen, Y.G. Cao, Y.P. Xu, L.D. Xun, T. Xu, J.K. Liang, Low-temperature synthesis and photoluminescence of AlN. J. Cryst. Growth 207, 247 (1999)CrossRef
14.
Zurück zum Zitat B.T. Adekore, K. Rakes, B. Wang, M.J. Callahan, S. Pendurti, Z. Sitar, Ammonothermal synthesis of aluminum nitride crystals on group III-nitride templates. J. Electron. Mater. 35, 1104 (2006)CrossRef B.T. Adekore, K. Rakes, B. Wang, M.J. Callahan, S. Pendurti, Z. Sitar, Ammonothermal synthesis of aluminum nitride crystals on group III-nitride templates. J. Electron. Mater. 35, 1104 (2006)CrossRef
15.
Zurück zum Zitat J. Hertrampf, P. Becker, M. Widenmeyer, A. Weidenkaff, E. Schlücker, R. Niewa, Ammonothermal crystal growth of indium nitride. Cryst. Growth Des. 18, 2365 (2018)CrossRef J. Hertrampf, P. Becker, M. Widenmeyer, A. Weidenkaff, E. Schlücker, R. Niewa, Ammonothermal crystal growth of indium nitride. Cryst. Growth Des. 18, 2365 (2018)CrossRef
16.
Zurück zum Zitat K.S.A. Butcher, T.L. Tansley, InN, latest development and a review of the band-gap controversy. Superlattices Microstruct. 38, 1 (2005)CrossRef K.S.A. Butcher, T.L. Tansley, InN, latest development and a review of the band-gap controversy. Superlattices Microstruct. 38, 1 (2005)CrossRef
17.
Zurück zum Zitat H. Jacobs, C. Stüve, Hochdrucksynthese der η-Phase im system Mn-N: Mn3N2. J. Less-Common Met. 96, 323 (1984) H. Jacobs, C. Stüve, Hochdrucksynthese der η-Phase im system Mn-N: Mn3N2. J. Less-Common Met. 96, 323 (1984)
18.
Zurück zum Zitat G. Kreiner, H. Jacobs, Magnetische Struktur von η-Mn3N2. J. Alloys Compd. 183, 345 (1992)CrossRef G. Kreiner, H. Jacobs, Magnetische Struktur von η-Mn3N2. J. Alloys Compd. 183, 345 (1992)CrossRef
19.
Zurück zum Zitat M. Zając, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski, Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr). J. Alloys Compd. 456, 324 (2008)CrossRef M. Zając, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski, Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr). J. Alloys Compd. 456, 324 (2008)CrossRef
20.
Zurück zum Zitat H. Jacobs, J. Bock, Einkristallzüchtung von γ′-Fe4N in überkritischem Ammoniak. J. Less-Common Met. 134, 215 (1987)CrossRef H. Jacobs, J. Bock, Einkristallzüchtung von γ′-Fe4N in überkritischem Ammoniak. J. Less-Common Met. 134, 215 (1987)CrossRef
21.
Zurück zum Zitat U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu3N. J. Less-Common Met. 161, 175 (1990)CrossRef U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu3N. J. Less-Common Met. 161, 175 (1990)CrossRef
22.
Zurück zum Zitat H. Jacobs, E. von Pinkowski, Synthese ternärer Nitride von Alkalimetallen: Verbindungen mit Tantal, MTaN2 mit M ≡ Na, K, Rb und Cs. J. Less-Common Met. 146, 147 (1989)CrossRef H. Jacobs, E. von Pinkowski, Synthese ternärer Nitride von Alkalimetallen: Verbindungen mit Tantal, MTaN2 mit M ≡ Na, K, Rb und Cs. J. Less-Common Met. 146, 147 (1989)CrossRef
23.
Zurück zum Zitat N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON2 (Ln = La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410 (2017)CrossRef N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON2 (Ln = La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410 (2017)CrossRef
24.
Zurück zum Zitat J. Häusler, Ammonothermal synthesis of functional ternary and multinary nitrides. Dissertation, LMU München (2018) J. Häusler, Ammonothermal synthesis of functional ternary and multinary nitrides. Dissertation, LMU München (2018)
25.
Zurück zum Zitat T. Brokamp, H. Jacobs, Synthese und Kristallstruktur eines gemischtvalenten Lithium-Tantalnitrids Li2Ta3N5. J. Alloys Compd. 176, 47 (1991)CrossRef T. Brokamp, H. Jacobs, Synthese und Kristallstruktur eines gemischtvalenten Lithium-Tantalnitrids Li2Ta3N5. J. Alloys Compd. 176, 47 (1991)CrossRef
26.
Zurück zum Zitat H. Jacobs, H. Mengis, Preparation and crystal structure of a sodium silicon nitride, NaSi2N3. Eur. J. Solid State Inorg. Chem. 30, 45 (1993) H. Jacobs, H. Mengis, Preparation and crystal structure of a sodium silicon nitride, NaSi2N3. Eur. J. Solid State Inorg. Chem. 30, 45 (1993)
27.
Zurück zum Zitat D. Peters, E.F. Paulus, H. Jacobs, Preparation and crystal structure of a potassium imidenitridesilicate, K3Si6N5(NH)6. Z. Anorg. Allg. Chem. 584, 129 (1990)CrossRef D. Peters, E.F. Paulus, H. Jacobs, Preparation and crystal structure of a potassium imidenitridesilicate, K3Si6N5(NH)6. Z. Anorg. Allg. Chem. 584, 129 (1990)CrossRef
28.
Zurück zum Zitat J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV = Si, Ge). Chem. Eur. J. 24, 1686 (2018)CrossRef J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV = Si, Ge). Chem. Eur. J. 24, 1686 (2018)CrossRef
29.
Zurück zum Zitat J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN2 and ZnGeN2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 12275 (2017)CrossRef J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN2 and ZnGeN2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 12275 (2017)CrossRef
30.
Zurück zum Zitat T.M.M. Richter, S. LeTonquesse, N.S.A. Alt, E. Schlücker, R. Niewa, Trigonal-bipyramidal coordination in first ammoniates of ZnF2: ZnF2(NH3)3 and ZnF2(NH3)2. Inorg. Chem. 55, 2488 (2016)CrossRef T.M.M. Richter, S. LeTonquesse, N.S.A. Alt, E. Schlücker, R. Niewa, Trigonal-bipyramidal coordination in first ammoniates of ZnF2: ZnF2(NH3)3 and ZnF2(NH3)2. Inorg. Chem. 55, 2488 (2016)CrossRef
31.
Zurück zum Zitat Y. Hinuma, T. Hatakeyama, Y. Kumagai, L.A. Burton, H. Sato, Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, F. Oba, Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat. Commun. 7, 11962 (2016)CrossRef Y. Hinuma, T. Hatakeyama, Y. Kumagai, L.A. Burton, H. Sato, Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, F. Oba, Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat. Commun. 7, 11962 (2016)CrossRef
32.
Zurück zum Zitat D. Naveh, L. Kronik, Spin-polarized electronic structure of Mn-IV-V2 chalcopyrites. Phys. Status Solidi B 243, 2159 (2006)CrossRef D. Naveh, L. Kronik, Spin-polarized electronic structure of Mn-IV-V2 chalcopyrites. Phys. Status Solidi B 243, 2159 (2006)CrossRef
33.
Zurück zum Zitat C.J. Duan, A.C.A. Delsing, H.T. Hintzen, Red emission from Mn2+ on a tetrahedral site in MgSiN2. J. Lumin. 129, 645 (2009)CrossRef C.J. Duan, A.C.A. Delsing, H.T. Hintzen, Red emission from Mn2+ on a tetrahedral site in MgSiN2. J. Lumin. 129, 645 (2009)CrossRef
34.
Zurück zum Zitat T. de Boer, P. Strobel, J. Häusler, W. Schnick, A. Moewes, Band gap and electronic structure of Zn(Ge,Si)N2: probing defects using XEOL, in Advanced Light Source (ALS) User Meeting, Berkeley, CA (2017) T. de Boer, P. Strobel, J. Häusler, W. Schnick, A. Moewes, Band gap and electronic structure of Zn(Ge,Si)N2: probing defects using XEOL, in Advanced Light Source (ALS) User Meeting, Berkeley, CA (2017)
35.
Zurück zum Zitat F. Kawamura, N. Yamada, M. Imai, T. Taniguchi, Synthesis of ZnSnN2 crystals via a high-pressure metathesis reaction. Cryst. Res. Technol. 51, 220 (2016)CrossRef F. Kawamura, N. Yamada, M. Imai, T. Taniguchi, Synthesis of ZnSnN2 crystals via a high-pressure metathesis reaction. Cryst. Res. Technol. 51, 220 (2016)CrossRef
36.
Zurück zum Zitat H. Jacobs, R. Nymwegen, Synthesis and crystal structure of a potassium nitridophosphate, K3P6N11. Z. Anorg. Allg. Chem. 623, 429 (1997)CrossRef H. Jacobs, R. Nymwegen, Synthesis and crystal structure of a potassium nitridophosphate, K3P6N11. Z. Anorg. Allg. Chem. 623, 429 (1997)CrossRef
37.
Zurück zum Zitat U. Müller, Anorganische Strukturchemie, 6th edn. (Vieweg + Teubner, Wiesbaden, 2008), p. 246 U. Müller, Anorganische Strukturchemie, 6th edn. (Vieweg + Teubner, Wiesbaden, 2008), p. 246
38.
Zurück zum Zitat H. Jacobs, R. Nymwegen, S. Doyle, T. Wroblewski, W. Kockelmann, Crystalline phosphorus(V) nitride imide, HPN2 and DPN2, respectively—structure determination with X-ray, synchrotron, and neutron radiation. Z. Anorg. Allg. Chem. 623, 1467 (1997)CrossRef H. Jacobs, R. Nymwegen, S. Doyle, T. Wroblewski, W. Kockelmann, Crystalline phosphorus(V) nitride imide, HPN2 and DPN2, respectively—structure determination with X-ray, synchrotron, and neutron radiation. Z. Anorg. Allg. Chem. 623, 1467 (1997)CrossRef
39.
Zurück zum Zitat H. Jacobs, S. Pollok, F. Golinski, Synthesis and crystal structure of Na10[P4(NH)6N4](NH2)6(NH3)0.5 with an adamantane-like anion [P4(NH)6N4]4−. Z. Anorg. Allg. Chem. 620, 1213 (1994) H. Jacobs, S. Pollok, F. Golinski, Synthesis and crystal structure of Na10[P4(NH)6N4](NH2)6(NH3)0.5 with an adamantane-like anion [P4(NH)6N4]4−. Z. Anorg. Allg. Chem. 620, 1213 (1994)
40.
Zurück zum Zitat F. Golinski, H. Jacobs, Synthesis and crystal structure of Rb8[P4N6(NH)4](NH2)2 with the adamantane-like anion [P4N6(NH)4]6−. Z. Anorg. Allg. Chem. 621, 29 (1995)CrossRef F. Golinski, H. Jacobs, Synthesis and crystal structure of Rb8[P4N6(NH)4](NH2)2 with the adamantane-like anion [P4N6(NH)4]6−. Z. Anorg. Allg. Chem. 621, 29 (1995)CrossRef
41.
Zurück zum Zitat H. Jacobs, F. Golinski, Synthesis and crystal structure of a cesium-tetraimidophosphate-diamide, Cs5[P(NH)4](NH2)2 = Cs3[P(NH)4]·2 CsNH2. Z. Anorg. Allg. Chem. 620, 531 (1994)CrossRef H. Jacobs, F. Golinski, Synthesis and crystal structure of a cesium-tetraimidophosphate-diamide, Cs5[P(NH)4](NH2)2 = Cs3[P(NH)4]·2 CsNH2. Z. Anorg. Allg. Chem. 620, 531 (1994)CrossRef
42.
Zurück zum Zitat M. Mallmann, C. Maak, R. Niklaus, W. Schnick, Ammonothermal synthesis, optical properties and DFT calculations of Mg2PN3 and Zn2PN3. Chem. Eur. J. 24, 13963 (2018) M. Mallmann, C. Maak, R. Niklaus, W. Schnick, Ammonothermal synthesis, optical properties and DFT calculations of Mg2PN3 and Zn2PN3. Chem. Eur. J. 24, 13963 (2018)
43.
Zurück zum Zitat J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Low-temperature crystallization of Eu-doped red-emitting CaAlSiN3 from alloy-derived ammonometallates. Chem. Mater. 19, 3592 (2007)CrossRef J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Low-temperature crystallization of Eu-doped red-emitting CaAlSiN3 from alloy-derived ammonometallates. Chem. Mater. 19, 3592 (2007)CrossRef
44.
Zurück zum Zitat J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, M. Yoshimura, Synthesis of a multinary nitride, Eu-doped CaAlSiN3, from alloy at low temperatures. Chem. Mater. 20, 2095 (2008)CrossRef J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, M. Yoshimura, Synthesis of a multinary nitride, Eu-doped CaAlSiN3, from alloy at low temperatures. Chem. Mater. 20, 2095 (2008)CrossRef
45.
Zurück zum Zitat J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Synthesis of Eu-doped CaAlSiN3 from ammonometallates: effects of sodium content and pressure. J. Am. Ceram. Soc. 92, 344 (2009)CrossRef J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Synthesis of Eu-doped CaAlSiN3 from ammonometallates: effects of sodium content and pressure. J. Am. Ceram. Soc. 92, 344 (2009)CrossRef
46.
Zurück zum Zitat J. Cho, B.K. Bang, S.J. Jeong, C.H. Kim, Synthesis of red-emitting nanocrystalline phosphor CaAlSiN3:Eu2+ derived from elementary constituents. RSC Adv. 4, 23218 (2014)CrossRef J. Cho, B.K. Bang, S.J. Jeong, C.H. Kim, Synthesis of red-emitting nanocrystalline phosphor CaAlSiN3:Eu2+ derived from elementary constituents. RSC Adv. 4, 23218 (2014)CrossRef
47.
Zurück zum Zitat K. Nonaka, K. Kishida, C. Izawa, T. Watanabe, Low temperature ammonothermal synthesis of europium-doped SrAlSiN3 effect of mineralizers. J. Ceram. Soc. Jpn. 122, 17 (2014)CrossRef K. Nonaka, K. Kishida, C. Izawa, T. Watanabe, Low temperature ammonothermal synthesis of europium-doped SrAlSiN3 effect of mineralizers. J. Ceram. Soc. Jpn. 122, 17 (2014)CrossRef
48.
Zurück zum Zitat T. Watanabe, K. Nonaka, J. Li, K. Kishida, M. Yoshimura, Low temperature ammonothermal synthesis of europium-doped SrAlSiN3 for a nitride red phosphor. J. Ceram. Soc. Jpn. 120, 500 (2012)CrossRef T. Watanabe, K. Nonaka, J. Li, K. Kishida, M. Yoshimura, Low temperature ammonothermal synthesis of europium-doped SrAlSiN3 for a nitride red phosphor. J. Ceram. Soc. Jpn. 120, 500 (2012)CrossRef
49.
Zurück zum Zitat J. Häusler, L. Neudert, M. Mallmann, R. Niklaus, A.C.L. Kimmel, N.S.A. Alt, E. Schlücker, O. Oeckler, W. Schnick, Ammonothermal synthesis of novel nitrides: case study on CaGaSiN3. Chem. Eur. J. 23, 2583 (2017)CrossRef J. Häusler, L. Neudert, M. Mallmann, R. Niklaus, A.C.L. Kimmel, N.S.A. Alt, E. Schlücker, O. Oeckler, W. Schnick, Ammonothermal synthesis of novel nitrides: case study on CaGaSiN3. Chem. Eur. J. 23, 2583 (2017)CrossRef
50.
Zurück zum Zitat R. Niklaus, J. Minar, J. Häusler, W. Schnick, First-principles and experimental characterization of the electronic properties of CaGaSiN3 and CaAlSiN3: the impact of chemical disorder. Phys. Chem. Chem. Phys. 19, 9292 (2017)CrossRef R. Niklaus, J. Minar, J. Häusler, W. Schnick, First-principles and experimental characterization of the electronic properties of CaGaSiN3 and CaAlSiN3: the impact of chemical disorder. Phys. Chem. Chem. Phys. 19, 9292 (2017)CrossRef
51.
Zurück zum Zitat L. Wang, R.-J. Xie, Y. Li, X. Wang, C.-G. Ma, D. Luo, T. Takeda, Y.-T. Tsai, R.-S. Liu, N. Hirosaki, Ca1−xLixAl1−xSi1+xN3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes. Light: Sci. Appl. 5, e16155 (2016) L. Wang, R.-J. Xie, Y. Li, X. Wang, C.-G. Ma, D. Luo, T. Takeda, Y.-T. Tsai, R.-S. Liu, N. Hirosaki, Ca1−xLixAl1−xSi1+xN3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes. Light: Sci. Appl. 5, e16155 (2016)
52.
Zurück zum Zitat J. Häusler, L. Eisenburger, O. Oeckler, W. Schnick, Ammonothermal synthesis and crystal structure of the nitridoalumogermanate Ca1−xLixAl1−xGe1+xN3 (x ≈ 0.2). Eur. J. Inorg. Chem. 2018, 759 (2018) J. Häusler, L. Eisenburger, O. Oeckler, W. Schnick, Ammonothermal synthesis and crystal structure of the nitridoalumogermanate Ca1−xLixAl1−xGe1+xN3 (x ≈ 0.2). Eur. J. Inorg. Chem. 2018, 759 (2018)
53.
Zurück zum Zitat D.R. Modeshia, R.I. Walton, Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem. Soc. Rev. 39, 4303 (2010)CrossRef D.R. Modeshia, R.I. Walton, Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem. Soc. Rev. 39, 4303 (2010)CrossRef
54.
Zurück zum Zitat T. Watanabe, K. Tajima, J. Li, N. Matsushita, M. Yoshimura, Low-temperature ammonothermal synthesis of LaTaON2. Chem. Lett. 40, 1101 (2011)CrossRef T. Watanabe, K. Tajima, J. Li, N. Matsushita, M. Yoshimura, Low-temperature ammonothermal synthesis of LaTaON2. Chem. Lett. 40, 1101 (2011)CrossRef
55.
Zurück zum Zitat C. Izawa, T. Kobayashi, K. Kishida, T. Watanabe, Ammonothermal synthesis and photocatalytic activity of lower valence cation-doped LaNbON2. Adv. Mater. Sci. Eng. 2014, 5 (2014)CrossRef C. Izawa, T. Kobayashi, K. Kishida, T. Watanabe, Ammonothermal synthesis and photocatalytic activity of lower valence cation-doped LaNbON2. Adv. Mater. Sci. Eng. 2014, 5 (2014)CrossRef
56.
Zurück zum Zitat H. Jacobs, H. Scholze, Investigation of the system Na/La/NH3. Z. Anorg. Allg. Chem. 427, 8 (1976)CrossRef H. Jacobs, H. Scholze, Investigation of the system Na/La/NH3. Z. Anorg. Allg. Chem. 427, 8 (1976)CrossRef
57.
Zurück zum Zitat T. Toshima, K. Kishida, Y. Maruyama, T. Watanabe, Low-temperature synthesis of BaTaO2N by an ammonothermal method. J. Ceram. Soc. Jpn. 125, 643 (2017)CrossRef T. Toshima, K. Kishida, Y. Maruyama, T. Watanabe, Low-temperature synthesis of BaTaO2N by an ammonothermal method. J. Ceram. Soc. Jpn. 125, 643 (2017)CrossRef
58.
Zurück zum Zitat K. Ueda, T. Minegishi, J. Clune, M. Nakabayashi, T. Hisatomi, H. Nishiyama, M. Katayama, N. Shibata, J. Kubota, T. Yamada, K. Domen, Photoelectrochemical oxidation of water using BaTaO2N photoanodes prepared by particle transfer method. J. Am. Chem. Soc. 137, 2227 (2015)CrossRef K. Ueda, T. Minegishi, J. Clune, M. Nakabayashi, T. Hisatomi, H. Nishiyama, M. Katayama, N. Shibata, J. Kubota, T. Yamada, K. Domen, Photoelectrochemical oxidation of water using BaTaO2N photoanodes prepared by particle transfer method. J. Am. Chem. Soc. 137, 2227 (2015)CrossRef
59.
Zurück zum Zitat J. Jander, H. Spandau, C.C. Addison, Anorganische und allgemeine Chemie in flüssigem Ammoniak (Friedr. Vieweg & Sohn, Braunschweig, 1966) J. Jander, H. Spandau, C.C. Addison, Anorganische und allgemeine Chemie in flüssigem Ammoniak (Friedr. Vieweg & Sohn, Braunschweig, 1966)
60.
Zurück zum Zitat N. Cordes, T. Bräuniger, W. Schnick, Ammonothermal synthesis of EAMO2N (EA = Sr, Ba; M = Nb, Ta) Perovskites and 14N solid-state NMR investigations of AM(O,N)3 (A = Ca, Sr, Ba, La). Eur. J. Inorg. Chem. 2018, 5019 (2018) N. Cordes, T. Bräuniger, W. Schnick, Ammonothermal synthesis of EAMO2N (EA = Sr, Ba; M = Nb, Ta) Perovskites and 14N solid-state NMR investigations of AM(O,N)3 (A = Ca, Sr, Ba, La). Eur. J. Inorg. Chem. 2018, 5019 (2018)
61.
Zurück zum Zitat R. Dwilinski, J.M. Baranowski, M. Kaminska, R. Doradzinski, J. Garczynski, L. Sierzputowski, On GaN crystallization by ammonothermal method. Acta Phys. Pol. A 90, 763 (1996) R. Dwilinski, J.M. Baranowski, M. Kaminska, R. Doradzinski, J. Garczynski, L. Sierzputowski, On GaN crystallization by ammonothermal method. Acta Phys. Pol. A 90, 763 (1996)
62.
Zurück zum Zitat A. Leineweber, H. Jacobs, S. Hull, Ordering of nitrogen in nickel nitride Ni3N determined by neutron diffraction. Inorg. Chem. 40, 5818 (2001)CrossRef A. Leineweber, H. Jacobs, S. Hull, Ordering of nitrogen in nickel nitride Ni3N determined by neutron diffraction. Inorg. Chem. 40, 5818 (2001)CrossRef
63.
Zurück zum Zitat Y. Maruyama, T. Watanabe, Low-temperature synthesis of CaAlSiN3:Ce3+ using the ammonothermal method. J. Ceram. Soc. Jpn. 124, 66 (2016)CrossRef Y. Maruyama, T. Watanabe, Low-temperature synthesis of CaAlSiN3:Ce3+ using the ammonothermal method. J. Ceram. Soc. Jpn. 124, 66 (2016)CrossRef
64.
Zurück zum Zitat Y. Maruyama, Y. Yanase, T. Watanabe, Ammonothermal synthesis of charge-compensated SrAlSiN3:Ce3+ phosphor. J. Ceram. Soc. Jpn. 125, 399 (2017)CrossRef Y. Maruyama, Y. Yanase, T. Watanabe, Ammonothermal synthesis of charge-compensated SrAlSiN3:Ce3+ phosphor. J. Ceram. Soc. Jpn. 125, 399 (2017)CrossRef
65.
Zurück zum Zitat A.D. Martinez, A.N. Fioretti, E.S. Toberer, A.C. Tamboli, Synthesis, structure, and optoelectronic properties of II-IV-V2 materials. J. Mater. Chem. A 5, 11418 (2017)CrossRef A.D. Martinez, A.N. Fioretti, E.S. Toberer, A.C. Tamboli, Synthesis, structure, and optoelectronic properties of II-IV-V2 materials. J. Mater. Chem. A 5, 11418 (2017)CrossRef
66.
Zurück zum Zitat T.R. Paudel, W.R.L. Lambrecht, First-principles calculations of elasticity, polarization-related properties, and nonlinear optical coefficients in Zn-IV-N2 compounds. Phys. Rev. B 79, 245205 (2009)CrossRef T.R. Paudel, W.R.L. Lambrecht, First-principles calculations of elasticity, polarization-related properties, and nonlinear optical coefficients in Zn-IV-N2 compounds. Phys. Rev. B 79, 245205 (2009)CrossRef
67.
Zurück zum Zitat M. Ahmed, G. Xinxin, A review of metal oxynitrides for photocatalysis. Inorg. Chem. Front. 3, 578 (2016)CrossRef M. Ahmed, G. Xinxin, A review of metal oxynitrides for photocatalysis. Inorg. Chem. Front. 3, 578 (2016)CrossRef
68.
Zurück zum Zitat M.R. Amin, T. de Boer, P. Becker, J. Hertrampf, R. Niewa, A. Moewes, Bandgap and electronic structure determination of oxygen-containing ammonothermal InN: experiment and theory. J. Phys. Chem. C 123, 8943 (2019) M.R. Amin, T. de Boer, P. Becker, J. Hertrampf, R. Niewa, A. Moewes, Bandgap and electronic structure determination of oxygen-containing ammonothermal InN: experiment and theory. J. Phys. Chem. C 123, 8943 (2019)
69.
Zurück zum Zitat N. Cordes, M. Nentwig, L. Eisenburger, O. Oeckler, W. Schnick, Ammonothermal synthesis of the mixed-valence nitrogen-rich europium tantalum ruddlesden-popper phase EuIIEuIII2Ta2N4O3. Eur. J. Inorg. Chem. 2019, 2304 (2019) N. Cordes, M. Nentwig, L. Eisenburger, O. Oeckler, W. Schnick, Ammonothermal synthesis of the mixed-valence nitrogen-rich europium tantalum ruddlesden-popper phase EuIIEuIII2Ta2N4O3. Eur. J. Inorg. Chem. 2019, 2304 (2019)
Metadaten
Titel
Explorative Synthesis of Novel Nitride Compounds by Ammonothermal Synthesis
verfasst von
Mathias Mallmann
Niklas Cordes
Wolfgang Schnick
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-56305-9_12