1.
Bäck, T., Foussette, C., Krause, Peter: Contemporary Evolution Strategies. Natural Computing. Springer, Berlin (2013)
CrossRefMATH
2.
Beyer, H.-G., Meyer-Nieberg, S.: Self-adaptation of evolution strategies under noisy fitness evaluations. Genet. Program. Evolv. Mach.
7(4), 295–328 (2006)
CrossRef
3.
Beyer, H.-G., Schwefel, H.-P.: Evolution strategies: a comprehensive introduction. Nat. Comput.
1(1), 3–52 (2002)
MathSciNetCrossRefMATH
4.
Beyer, H.-G., Sendhoff, B.: Lecture Notes in Computer Science. In: Rudolph, G., et al. (eds.) PPSN. Covariance matrix adaptation revisited - the CMSA evolution strategy, vol. 5199, pp. 123–132. Springer, Berlin (2008)
5.
Cai, Tony, Liu, Weidong: Adaptive thresholding for sparse covariance matrix estimation. J. Am. Stat. Assoc.
106(494), 672–684 (2011)
MathSciNetCrossRefMATH
6.
Chen, X., Wang, Z.J., McKeown, M.J.: Shrinkage-to-tapering estimation of large covariance matrices. IEEE Trans. Signal Process.
60(11), 5640–5656 (2012)
MathSciNetCrossRef
7.
Dong, W., Yao, X.: Covariance matrix repairing in gaussian based EDAs. In: 2007 IEEE Congress on Evolutionary Computation, 2007. CEC, pp. 415–422 (2007)
8.
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Computing Series. Springer, Berlin (2003)
CrossRefMATH
9.
Fan, J., Liao, Y., Liu, H.: An overview on the estimation of large covariance and precision matrices.
arXiv:1504.02995
10.
Fan, J., Liao, Y., Mincheva, Martina: Large covariance estimation by thresholding principal orthogonal complements. J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
75(4), 603–680 (2013)
MathSciNetCrossRef
11.
Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2010: presentation of the noiseless functions. Technical report, Institute National de Recherche en Informatique et Automatique (2010) 2009/22
12.
Fisher, T.J., Sun, Xiaoqian: Improved Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix. Comput. Stat. Data Anal.
55(5), 1909–1918 (2011)
MathSciNetCrossRefMATH
13.
Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics
9(3), 432–441 (2008)
CrossRefMATH
14.
Guillot, D., Rajaratnam, B.: Functions preserving positive definiteness for sparse matrices. Trans. Am. Math. Soc.
367(1), 627–649 (2015)
MathSciNetCrossRefMATH
15.
Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A. et al., (ed.) Towards a new evolutionary computation. Advances in estimation of distribution algorithms, pp. 75–102. Springer (2006)
16.
Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA (2012)
17.
Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolut. Comput.
9(2), 159–195 (2001)
CrossRef
18.
Hansen, Nikolaus: Adaptive encoding: How to render search coordinate system invariant. In: Rudolph, G., Jansen, T., Beume, N., Lucas, Simon, Poloni, Carlo (eds.) Parallel Problem Solving from Nature PPSN X. Lecture Notes in Computer Science, vol. 5199, pp. 205–214. Springer, Berlin (2008)
CrossRef
19.
Ledoit, O., Wolf, Michael: A well-conditioned estimator for large dimensional covariance matrices. J. Multivar. Anal. Arch.
88(2), 265–411 (2004)
MathSciNetMATH
20.
Levina, E., Rothman, A., Zhu, J.: Sparse estimation of large covariance matrices via a nested lasso penalty. Ann. Appl. Stat.
2(1), 245–263 (2008)
MathSciNetCrossRefMATH
21.
Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues for some sets of random matrices. Sbornik: Math.
1(4), 457–483 (1967)
CrossRef
22.
Meyer-Nieberg, S., Kropat, E: Adapting the covariance in evolution strategies. In: Proceedings of ICORES 2014, pp. 89–99. SCITEPRESS (2014)
23.
Meyer-Nieberg, S., Kropat, E.: Communications in Computer and Information Science. In: Pinson, E., Valente, F., Vitoriano, B. (eds.) Operations Research and Enterprise System. A new look at the covariance matrix estimation in evolution strategies, vol. 509, pp. 157–172. Springer International Publishing, Berlin (2015)
24.
Pourahmadi, M.: High-Dimensional Covariance Estimation: With High-Dimensional Data. Wiley, New York (2013)
CrossRefMATH
25.
Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)
26.
Ros, R., Hansen, N.: Parallel Problem Solving from Nature – PPSN X: 10th International Conference, Dortmund, Germany, Sept 13-17, 2008. Proceedings, chapter A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity, pp. 296–305. Springer, Heidelberg (2008)
27.
Schäffer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol.
4(1), 32 (2005)
MathSciNet
28.
Schwefel, H.-P.: Numerical Optimization of Computer Models. Wiley, Chichester (1981)
MATH
29.
Stein, C.: Inadmissibility of the usual estimator for the mean of a multivariate distribution. In: Proceedings of 3rd Berkeley Symposium on Mathematical Statistics Probability, vol.1, pp. 197–206. Berkeley, CA (1956)
30.
Stein, C.: Estimation of a covariance matrix. In: Rietz Lecture, 39th Annual Meeting. IMS, Atlanta, GA (1975)