Skip to main content
Erschienen in: Journal of Materials Science 17/2019

28.05.2019 | Ceramics

Exploring the catalytic activity of MXenes Mn+1CnO2 for hydrogen evolution

verfasst von: Shiguo Ma, Xiaoli Fan, Yurong An, Danxi Yang, Zhifen Luo, Yan Hu, Nijing Guo

Erschienen in: Journal of Materials Science | Ausgabe 17/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Currently, finding the non-precious metal catalyst for hydrogen evolution reaction (HER) is significant and urgent. By performing the first-principles calculations, we studied the structural and electronic properties, as well as the catalytic activity of MXenes Mn+1CnO2 (n = 1, 2; M = Sc, Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta and W) toward HER. These 22 MXenes are metallic except for Sc2CO2, Ti2CO2, Mn2CO2, Zr2CO2 and Hf2CO2 which are semiconducting. By calculating the Gibbs free energy change (ΔGH) for H adsorption which is the simple but effective descriptor for HER catalytic activity, and analyzing the electrical conductivity, we find that Nb2CO2, W2CO2, Zr3C2O2 and W3C2O2 are catalytic active for HER at low H coverage. Particularly, Nb2CO2 and Zr3C2O2 maintain to be active for catalyzing HER under tensile strain less than 5%. And Nb3C2O2 shows enhanced catalytic activity for HER under 3–5% tensile strain. Additionally, the differential ΔGH and average ΔGH were used to evaluate the HER catalytic activity at high H coverage (1/8–6/8). Our calculations show that Nb2CO2 is active for HER at H coverage less than 3/8. Plus, V2CO2, Ti3C2O2 and Cr3C2O2 demonstrate the catalytic activity for HER at high H coverage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dresselhaus M, Thomas I (2001) Alternative energy technologies. Nature 414:332–337CrossRef Dresselhaus M, Thomas I (2001) Alternative energy technologies. Nature 414:332–337CrossRef
2.
Zurück zum Zitat Turner JA (2004) Sustainable hydrogen production. Science 305:972–974CrossRef Turner JA (2004) Sustainable hydrogen production. Science 305:972–974CrossRef
3.
Zurück zum Zitat Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303CrossRef Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303CrossRef
4.
Zurück zum Zitat Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resource: promising green energy carrier for clean development. Renew Sust Energy Rev 57:850–866CrossRef Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resource: promising green energy carrier for clean development. Renew Sust Energy Rev 57:850–866CrossRef
5.
Zurück zum Zitat Gressley J, Jarmaillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909CrossRef Gressley J, Jarmaillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909CrossRef
6.
Zurück zum Zitat Zou XX, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180CrossRef Zou XX, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180CrossRef
7.
Zurück zum Zitat Zhen Y, Jiao Y, Jaroniec M, Qiao SZ (2015) Advancing the electrochemistry of the hydrogen-evolution reaction through combing experiment and theory. Angew Chem Int Ed 54(1):52–65CrossRef Zhen Y, Jiao Y, Jaroniec M, Qiao SZ (2015) Advancing the electrochemistry of the hydrogen-evolution reaction through combing experiment and theory. Angew Chem Int Ed 54(1):52–65CrossRef
8.
Zurück zum Zitat Seh ZW, Fredrickson KD, Anasori B, Kibsgaard J, Strickler AL, Lukatskaya MR, Gogotsi Y, Jaramillo TF, Vojvodic A (2016) Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett 1(3):589–594CrossRef Seh ZW, Fredrickson KD, Anasori B, Kibsgaard J, Strickler AL, Lukatskaya MR, Gogotsi Y, Jaramillo TF, Vojvodic A (2016) Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett 1(3):589–594CrossRef
9.
Zurück zum Zitat Ran JR, Gao GP, Li FT, Ma TY, Du AJ, Qiao SZ (2017) Ti3C2 MXene Co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:13907CrossRef Ran JR, Gao GP, Li FT, Ma TY, Du AJ, Qiao SZ (2017) Ti3C2 MXene Co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:13907CrossRef
10.
Zurück zum Zitat Ling CY, Li S, Ouyang YX, Wang JL (2016) Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chem Mater 28(24):9026–9032CrossRef Ling CY, Li S, Ouyang YX, Wang JL (2016) Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chem Mater 28(24):9026–9032CrossRef
11.
Zurück zum Zitat Jiang W, Zou XL, Du HD, Gan L, Xu CJ, Kang FY, Duan WH, Li J (2018) Universal descriptor for large-scale screening of high-performance MXene-based materials for energy storage and conversion. Chem Mater 30(8):2687–2693CrossRef Jiang W, Zou XL, Du HD, Gan L, Xu CJ, Kang FY, Duan WH, Li J (2018) Universal descriptor for large-scale screening of high-performance MXene-based materials for energy storage and conversion. Chem Mater 30(8):2687–2693CrossRef
12.
Zurück zum Zitat Pandey M, Thygesen KS (2017) Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution; a computational screening study. J Phys Chem C 121(25):13593–13598CrossRef Pandey M, Thygesen KS (2017) Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution; a computational screening study. J Phys Chem C 121(25):13593–13598CrossRef
13.
Zurück zum Zitat Gao GP, O’Mullane AP, Du AJ (2017) 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal 7(1):494–500CrossRef Gao GP, O’Mullane AP, Du AJ (2017) 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal 7(1):494–500CrossRef
14.
Zurück zum Zitat Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2015) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309CrossRef Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2015) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309CrossRef
15.
Zurück zum Zitat Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2015) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152(3):J23–J26CrossRef Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2015) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152(3):J23–J26CrossRef
16.
Zurück zum Zitat Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2017) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834):100–102CrossRef Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2017) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834):100–102CrossRef
17.
Zurück zum Zitat Lukowski MA, Daniel AS, Meng F, Forticaux A, Li LS, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135(28):10274–10277CrossRef Lukowski MA, Daniel AS, Meng F, Forticaux A, Li LS, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135(28):10274–10277CrossRef
18.
Zurück zum Zitat Voiry D, Yamaguchi H, Li JW, Silva R, Alves DC, Fujita T, Chen MW, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12:850–855CrossRef Voiry D, Yamaguchi H, Li JW, Silva R, Alves DC, Fujita T, Chen MW, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12:850–855CrossRef
19.
Zurück zum Zitat Li YG, Wang HL, Xie LM, Liang YY, Hong GS, Dai HJ (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299CrossRef Li YG, Wang HL, Xie LM, Liang YY, Hong GS, Dai HJ (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299CrossRef
20.
Zurück zum Zitat Kibsgaard J, Chen ZB, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11:963–969CrossRef Kibsgaard J, Chen ZB, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11:963–969CrossRef
21.
Zurück zum Zitat Xie JF, Zhang H, Li S, Wang RX, Sun X, Zhou M, Zhou JF, Lou XW, Xie Y (2013) Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25(40):5807–5813CrossRef Xie JF, Zhang H, Li S, Wang RX, Sun X, Zhou M, Zhou JF, Lou XW, Xie Y (2013) Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25(40):5807–5813CrossRef
22.
Zurück zum Zitat Xie JF, Zhang JJ, Li S, Grote F, Zhang XD, Zhang H, Wang RX, Lei Y, Pan BC, Xie Y (2013) Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135(47):17881–17888CrossRef Xie JF, Zhang JJ, Li S, Grote F, Zhang XD, Zhang H, Wang RX, Lei Y, Pan BC, Xie Y (2013) Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135(47):17881–17888CrossRef
23.
Zurück zum Zitat Fan XL, Yang Y, Xiao P, Lau WM (2014) Site-specific catalytic activity in exfoliated MoS2 single-layer polytypes for hydrogen evolution: basal plane and edges. J Mater Chem A 2:20545–20551CrossRef Fan XL, Yang Y, Xiao P, Lau WM (2014) Site-specific catalytic activity in exfoliated MoS2 single-layer polytypes for hydrogen evolution: basal plane and edges. J Mater Chem A 2:20545–20551CrossRef
24.
Zurück zum Zitat An YR, Fan XL, Luo ZF, Lau WM (2016) Nanopolygons of monolayer MS2: best morphology and size for HER catalysis. Nano Lett 17(1):368–376CrossRef An YR, Fan XL, Luo ZF, Lau WM (2016) Nanopolygons of monolayer MS2: best morphology and size for HER catalysis. Nano Lett 17(1):368–376CrossRef
25.
Zurück zum Zitat Liang HF, Shi HH, Zhang DF, Ming FW, Wang RR, Zhuo JQ, Wang ZC (2016) Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution. Chem Mater 28(16):5587–5591CrossRef Liang HF, Shi HH, Zhang DF, Ming FW, Wang RR, Zhuo JQ, Wang ZC (2016) Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution. Chem Mater 28(16):5587–5591CrossRef
26.
Zurück zum Zitat Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-dimensional transition metal carbides. ACS Nano 6(2):1322–1331CrossRef Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-dimensional transition metal carbides. ACS Nano 6(2):1322–1331CrossRef
27.
Zurück zum Zitat Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th Anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005CrossRef Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th Anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005CrossRef
28.
Zurück zum Zitat Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253CrossRef Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253CrossRef
29.
Zurück zum Zitat Zhou J, Zha XH, Chen FY, Ye Q, Eklund P, Du SY, Huang Q (2016) Two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew Chem 128:5092–5097CrossRef Zhou J, Zha XH, Chen FY, Ye Q, Eklund P, Du SY, Huang Q (2016) Two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew Chem 128:5092–5097CrossRef
30.
Zurück zum Zitat Ashton M, Henning RG, Broderick SR, Rajan K, Sinnott SB (2016) Computational discovery of stable M2AX phases. Phys Rev B 94(5):054116CrossRef Ashton M, Henning RG, Broderick SR, Rajan K, Sinnott SB (2016) Computational discovery of stable M2AX phases. Phys Rev B 94(5):054116CrossRef
31.
Zurück zum Zitat Dall’Agnese Y, Taberna PL, Gogotsi Y, Simon P (2015) Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J Phys Chem Lett 6(12):2305–2309CrossRef Dall’Agnese Y, Taberna PL, Gogotsi Y, Simon P (2015) Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J Phys Chem Lett 6(12):2305–2309CrossRef
32.
Zurück zum Zitat Meshkian R, Tao QZ, Dahlqvist M, Lu J, Hultman L, Rosen J (2017) Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Mater 125:476–480CrossRef Meshkian R, Tao QZ, Dahlqvist M, Lu J, Hultman L, Rosen J (2017) Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Mater 125:476–480CrossRef
33.
Zurück zum Zitat Naguib M, Halim J, Lu J, Kevin MC, Lars H, Gogotsi Y, Barsoum MW (2013) New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc 135(43):15966–15969CrossRef Naguib M, Halim J, Lu J, Kevin MC, Lars H, Gogotsi Y, Barsoum MW (2013) New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc 135(43):15966–15969CrossRef
34.
Zurück zum Zitat Tang X, Guo X, Wu WJ, Wang GX (2018) 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for lithium-based batteries. Adv Energy Mater 8(33):1801897CrossRef Tang X, Guo X, Wu WJ, Wang GX (2018) 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for lithium-based batteries. Adv Energy Mater 8(33):1801897CrossRef
35.
Zurück zum Zitat Xu C, Wang LB, Liu ZB, Chen L, Guo JK, Ma XL, Cheng HM, Ren WC (2015) Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater 14:1135–1141CrossRef Xu C, Wang LB, Liu ZB, Chen L, Guo JK, Ma XL, Cheng HM, Ren WC (2015) Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater 14:1135–1141CrossRef
36.
Zurück zum Zitat Huang H, Wu HH, Chi C, Huang BL, Zhang TY (2019) Ab initio investigations of orthogonal ScC2 and ScN2 monolayers as promising anode materials for sodium-ion batteries. J Mater Chem A 7:8897–8904CrossRef Huang H, Wu HH, Chi C, Huang BL, Zhang TY (2019) Ab initio investigations of orthogonal ScC2 and ScN2 monolayers as promising anode materials for sodium-ion batteries. J Mater Chem A 7:8897–8904CrossRef
37.
Zurück zum Zitat Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153):1502–1505CrossRef Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153):1502–1505CrossRef
38.
Zurück zum Zitat Rakhi RB, Ahmed B, Hedhili MN, Anjum DH, Alshareef HN (2015) Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem Mater 27(15):5314–5323CrossRef Rakhi RB, Ahmed B, Hedhili MN, Anjum DH, Alshareef HN (2015) Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem Mater 27(15):5314–5323CrossRef
39.
Zurück zum Zitat Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098CrossRef Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098CrossRef
40.
Zurück zum Zitat Xie Y, Naguib M, Mochalin V, Barsoum MW, Gogotsi Y, Yu X, Nam KW, Yang KQ, Kolesnikov AI, Kent PRC (2014) Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc 135(17):6385–6394CrossRef Xie Y, Naguib M, Mochalin V, Barsoum MW, Gogotsi Y, Yu X, Nam KW, Yang KQ, Kolesnikov AI, Kent PRC (2014) Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc 135(17):6385–6394CrossRef
41.
Zurück zum Zitat Li NB, Wei ST, Xu YC, Liu J, Wu JD, Jia GR, Cui XQ (2018) Synergetic enhancement of oxygen evolution reaction by Ti3C2Tx nanosheets supported amorphous FeOOH quantum dots. Electrochim Acta 290:364–368CrossRef Li NB, Wei ST, Xu YC, Liu J, Wu JD, Jia GR, Cui XQ (2018) Synergetic enhancement of oxygen evolution reaction by Ti3C2Tx nanosheets supported amorphous FeOOH quantum dots. Electrochim Acta 290:364–368CrossRef
42.
Zurück zum Zitat Kresse G, Furthmüller J (1996) Efficiency iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter Mater Phys 54(16):11169–11186CrossRef Kresse G, Furthmüller J (1996) Efficiency iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter Mater Phys 54(16):11169–11186CrossRef
43.
Zurück zum Zitat Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B Condens Matter Mater Phys 59(3):1758–1775CrossRef Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B Condens Matter Mater Phys 59(3):1758–1775CrossRef
44.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef
45.
Zurück zum Zitat Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRef Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRef
46.
Zurück zum Zitat Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRef Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRef
47.
Zurück zum Zitat Greely J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913CrossRef Greely J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913CrossRef
48.
Zurück zum Zitat Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152(3):J23–J26CrossRef Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152(3):J23–J26CrossRef
49.
Zurück zum Zitat Irikura KK (2007) Experimental vibrational zero-point energies: diatomic molecules. J Phys Chem Ref Data 36(2):389–397CrossRef Irikura KK (2007) Experimental vibrational zero-point energies: diatomic molecules. J Phys Chem Ref Data 36(2):389–397CrossRef
50.
Zurück zum Zitat Campbell CT, Sellers JRV (2012) The entropies of adsorbed molecules. J Am Chem Soc 134(43):18109–18115CrossRef Campbell CT, Sellers JRV (2012) The entropies of adsorbed molecules. J Am Chem Soc 134(43):18109–18115CrossRef
51.
Zurück zum Zitat Budi A, Stipp SLS, Andersson MP (2018) Calculation of entropy of adsorption for small molecules on mineral surfaces. J Phys Chem C 122(15):8236–8243CrossRef Budi A, Stipp SLS, Andersson MP (2018) Calculation of entropy of adsorption for small molecules on mineral surfaces. J Phys Chem C 122(15):8236–8243CrossRef
52.
Zurück zum Zitat Fu ZH, Zhang QF, Legut D, Si C, Germann TC, Lookman T, Du SY, Francisco JS, Zhang RF (2016) Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Phys Rev B 94(10):104103CrossRef Fu ZH, Zhang QF, Legut D, Si C, Germann TC, Lookman T, Du SY, Francisco JS, Zhang RF (2016) Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Phys Rev B 94(10):104103CrossRef
53.
Zurück zum Zitat Fu ZH, Zhang H, Si C, Legut D, Germann TC, Zhang QF, Du SY, Francisco JS, Zhang RF (2018) Mechanistic quantification of thermodynamic stability and mechanical strength for two-dimensional transition-metal carbides. J Phys Chem C 122(8):4710–4722CrossRef Fu ZH, Zhang H, Si C, Legut D, Germann TC, Zhang QF, Du SY, Francisco JS, Zhang RF (2018) Mechanistic quantification of thermodynamic stability and mechanical strength for two-dimensional transition-metal carbides. J Phys Chem C 122(8):4710–4722CrossRef
54.
Zurück zum Zitat Yu S, Rao YC, Wu HH, Duan XM (2018) C2N: an excellent catalyst for the hydrogen evolution reaction. Phys Chem Chem Phys 20:27970–27974CrossRef Yu S, Rao YC, Wu HH, Duan XM (2018) C2N: an excellent catalyst for the hydrogen evolution reaction. Phys Chem Chem Phys 20:27970–27974CrossRef
Metadaten
Titel
Exploring the catalytic activity of MXenes Mn+1CnO2 for hydrogen evolution
verfasst von
Shiguo Ma
Xiaoli Fan
Yurong An
Danxi Yang
Zhifen Luo
Yan Hu
Nijing Guo
Publikationsdatum
28.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03712-4

Weitere Artikel der Ausgabe 17/2019

Journal of Materials Science 17/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.